This study examined the estimations of Weibull distribution using progressively first-failure censored data, under the assumption that removals follow the beta-binomial distribution. Classical and Bayesian approaches for estimating unknown model parameters have been established. The estimations included scale and shape parameters, reliability and failure rate metrics as well as beta-binomial parameters. Estimations were considered from both point and interval viewpoints. The Bayes estimates were developed by using the squared error loss and generating samples for the posterior distribution through the Markov Chain Monte Carlo technique. Two interval estimation approaches are considered: approximate confidence intervals based on asymptotic normality of likelihood estimates and Bayes credible intervals. To investigate the performance of classical and Bayesian estimations, a simulation study was considered by various kinds of experimental settings. Furthermore, two examples related to real datasets were thoroughly investigated to verify the practical importance of the suggested methodologies.
Citation: Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat. Analysis of Weibull progressively first-failure censored data with beta-binomial removals[J]. AIMS Mathematics, 2024, 9(9): 24109-24142. doi: 10.3934/math.20241172
This study examined the estimations of Weibull distribution using progressively first-failure censored data, under the assumption that removals follow the beta-binomial distribution. Classical and Bayesian approaches for estimating unknown model parameters have been established. The estimations included scale and shape parameters, reliability and failure rate metrics as well as beta-binomial parameters. Estimations were considered from both point and interval viewpoints. The Bayes estimates were developed by using the squared error loss and generating samples for the posterior distribution through the Markov Chain Monte Carlo technique. Two interval estimation approaches are considered: approximate confidence intervals based on asymptotic normality of likelihood estimates and Bayes credible intervals. To investigate the performance of classical and Bayesian estimations, a simulation study was considered by various kinds of experimental settings. Furthermore, two examples related to real datasets were thoroughly investigated to verify the practical importance of the suggested methodologies.
[1] | U. Balasooriya, Failure-censored reliability sampling plans for the exponential distribution, J. Stat. Comput. Simul., 52 (1995), 337–349. https://doi.org/10.1080/00949659508811684 doi: 10.1080/00949659508811684 |
[2] | J. W. Wu, W. L. Hung, C. H. Tsai, Estimation of the parameters of the Gompertz distribution under the first failure-censored sampling plan, Statistics, 37 (2003), 517–525. https://doi.org/10.1080/02331880310001598864 doi: 10.1080/02331880310001598864 |
[3] | J. W. Wu, W. L. Hung, C. Y. Chen, Approximate MLE of the scale parameter of the truncated Rayleigh distribution under the first failure-censored data, J. Inf. Optim. Sci., 25 (2004), 221–235. https://doi.org/10.1080/02522667.2004.10699604 doi: 10.1080/02522667.2004.10699604 |
[4] | S. J. Wu, C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Statist. Data Anal., 53 (2009), 3659–3670. https://doi.org/10.1016/j.csda.2009.03.010 doi: 10.1016/j.csda.2009.03.010 |
[5] | M. Dube, H. Krishna, R. Garg, Generalized inverted exponential distribution under progressive first-failure censoring, J. Stat. Comput. Simul., 86 (2016), 1095–1114. https://doi.org/10.1080/00949655.2015.1052440 doi: 10.1080/00949655.2015.1052440 |
[6] | S. Saini, A. Chaturvedi, R. Garg, Estimation of stress-strength reliability for generalized Maxwell failure distribution under progressive first failure censoring, J. Stat. Comput. Simul., 91 (2021), 1366–1393. https://doi.org/10.1080/00949655.2020.1856846 doi: 10.1080/00949655.2020.1856846 |
[7] | M. Nassar, R. Alotaibi, A. Elshahhat, Statistical analysis of alpha power exponential parameters using progressive first-failure censoring with applications, Axioms, 11 (2022), 553. https://doi.org/10.3390/axioms11100553 doi: 10.3390/axioms11100553 |
[8] | S. K. Ashour, A. A. El-Sheikh, A. Elshahhat, Inferences and optimal censoring schemes for progressively first-failure censored Nadarajah-Haghighi distribution, Sankhya A, 84 (2022), 885–923. https://doi.org/10.1007/s13171-019-00175-2 doi: 10.1007/s13171-019-00175-2 |
[9] | M. S. Eliwa, E. A. Ahmed, Reliability analysis of constant partially accelerated life tests under progressive first failure type-Ⅱ censored data from Lomax model: EM and MCMC algorithms, AIMS Mathematics, 8 (2023), 29–60. https://doi.org/10.3934/math.2023002 doi: 10.3934/math.2023002 |
[10] | N. Alsadat, M. Abu-Moussa, A. Sharawy, On the study of the recurrence relations and characterizations based on progressive first-failure censoring, AIMS Mathematics, 9 (2024), 481–494. https://doi.org/10.3934/math.2024026 doi: 10.3934/math.2024026 |
[11] | H. K. Yuen, S. K. Tse, Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removals, J. Stat. Comput. Simul., 55 (1996), 57–71. https://doi.org/10.1080/00949659608811749 doi: 10.1080/00949659608811749 |
[12] | S. R. Huang, S. J. Wu, Estimation of Pareto distribution under progressive first-failure censoring with random removals, J. Chin. Statist. Assoc., 49 (2011), 82—97. |
[13] | S. K. Ashour, A. A. El-Sheikh, A. Elshahhat, Inferences for Weibull lifetime model under progressively first-failure censored data with binomial random removals, Statist. Optim. Inf. Comput., 9 (2020), 47–60. https://doi.org/10.19139/soic-2310-5070-611 doi: 10.19139/soic-2310-5070-611 |
[14] | A. Elshahhat, V. K. Sharma, H. S. Mohammed, Statistical analysis of progressively first-failure-censored data via beta-binomial removals, AIMS Mathematics, 8 (2023), 22419–22446. https://doi.org/10.3934/math.20231144 doi: 10.3934/math.20231144 |
[15] | S. K. Singh, U. Singh, V. K. Sharma, Expected total test time and Bayesian estimation for generalized Lindley distribution under progressively Type-Ⅱ censored sample where removals follow the beta-binomial probability law, Appl. Math. Comput., 222 (2013), 402–419. https://doi.org/10.1016/j.amc.2013.07.058 doi: 10.1016/j.amc.2013.07.058 |
[16] | I. Usta, H. Gezer, Parameter estimation in Weibull distribution on progressively Type-Ⅱ censored sample with beta-binomial removals, Econom. Bus., 10 (2016), 505–515. |
[17] | A. Kaushik, U. Singh, S. K. Singh, Bayesian inference for the parameters of Weibull distribution under progressive Type-Ⅰ interval censored data with beta-binomial removals, Comm. Statist. Simulation Comput., 46 (2017), 3140–3158. https://doi.org/10.1080/03610918.2015.1076469 doi: 10.1080/03610918.2015.1076469 |
[18] | P. K. Vishwakarma, A. Kaushik, A. Pandey, U. Singh, S. K. Singh, Bayesian estimation for inverse Weibull distribution under progressive Type-Ⅱ censored data with beta-binomial removals, Aust. J. Stat., 47 (2018), 77–94. http://dx.doi.org/10.17713/ajs.v47i1.578 doi: 10.17713/ajs.v47i1.578 |
[19] | P. K. Sangal, A. Sinha, Classical estimation in exponential power distribution under Type-Ⅰ progressive hybrid censoring with beta-binomial removals, Int. J. Agricult. Stat. Sci., 17 (2021), 1973–1988. |
[20] | X. Jia, D. Wang, P. Jiang, B. Guo, Inference on the reliability of Weibull distribution with multiply Type-Ⅰ censored data, Reliab. Eng. Syst. Safety, 150 (2016), 171–181. https://doi.org/10.1016/j.ress.2016.01.025 doi: 10.1016/j.ress.2016.01.025 |
[21] | M. Nassar, M. Abo-Kasem, C. Zhang, S. Dey, Analysis of Weibull distribution under adaptive type-Ⅱ progressive hybrid censoring scheme, J. Indian. Soc. Probab. Stat., 19 (2018), 25–65. https://doi.org/10.1007/s41096-018-0032-5 doi: 10.1007/s41096-018-0032-5 |
[22] | E. Ramos, P. L. Ramos, F. Louzada, Posterior properties of the Weibull distribution for censored dat, Stat. Probab. Lett., 166 (2020), 108873. https://doi.org/10.1016/j.spl.2020.108873 doi: 10.1016/j.spl.2020.108873 |
[23] | T. Zhu, Statistical inference of Weibull distribution based on generalized progressively hybrid censored data, J. Comput. Appl. Math., 371 (2020), 112705. https://doi.org/10.1016/j.cam.2019.112705 doi: 10.1016/j.cam.2019.112705 |
[24] | J. K. Starling, C. Mastrangelo, Y. Choe, Improving Weibull distribution estimation for generalized Type Ⅰ censored data using modified SMOTE, Reliab. Eng. Syst. Safety, 211 (2021), 107505. https://doi.org/10.1016/j.ress.2021.107505 doi: 10.1016/j.ress.2021.107505 |
[25] | J. Ren, W. Gui, Statistical analysis of adaptive type-Ⅱ progressively censored competing risks for Weibull models, Appl. Math. Model., 98 (2021), 323–342. https://doi.org/10.1016/j.apm.2021.05.008 doi: 10.1016/j.apm.2021.05.008 |
[26] | M. Nassar, A. Elshahhat, Estimation procedures and optimal censoring schemes for an improved adaptive progressively type-Ⅱ censored Weibull distribution, J. Appl. Stat., 51 (2024), 1664–1688. https://doi.org/10.1080/02664763.2023.2230536 doi: 10.1080/02664763.2023.2230536 |
[27] | A. Xu, B. Wang, D. Zhu, J. Pang, X. Lian, Bayesian reliability assessment of permanent magnet brake under small sample size, IEEE Trans. Reliab., 2024, 1–11. https://doi.org/10.1109/TR.2024.3381072 |
[28] | M. Plummer, N. Best, K. Cowles, K. Vines, CODA: Convergence diagnosis and output analysis for MCMC, R News, 6 (2006), 7–11. |
[29] | A. Henningsen, O. Toomet, maxLik: A package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. https://doi.org/10.1007/s00180-010-0217-1 doi: 10.1007/s00180-010-0217-1 |
[30] | E. T. Lee, J. W. Wang, Statistical methods for survival data analysis, John Wiley & Sons, Inc., 2003. |
[31] | D. K. Bhaumik, K. Kapur, R. D. Gibbons, Testing parameters of a gamma distribution for small samples, Technometrics, 51 (2009), 326–334. https://doi.org/10.1198/tech.2009.07038 doi: 10.1198/tech.2009.07038 |
[32] | A. Elshahhat, B. R. Elemary, Analysis for Xgamma parameters of life under Type-Ⅱ adaptive progressively hybrid censoring with applications in engineering and chemistry, Symmetry, 13 (2021), 2112. https://doi.org/10.3390/sym13112112 doi: 10.3390/sym13112112 |
[33] | R. Alotaibi, A. Elshahhat, H. Rezk, M. Nassar, Inferences for alpha power exponential distribution using adaptive progressively type-Ⅱ hybrid censored data with applications, Symmetry, 14 (2022), 651. https://doi.org/10.3390/sym14040651 doi: 10.3390/sym14040651 |