In this paper, a class of Clifford-valued higher-order Hopfield neural networks with $ D $ operator is studied by non-decomposition method. Except for time delays, all parameters, activation functions and external inputs of this class of neural networks are Clifford-valued functions. Based on Banach fixed point theorem and differential inequality technique, we obtain the existence, uniqueness and global exponential stability of compact almost automorphic solutions for this class of neural networks. Our results of this paper are new. In addition, two examples and their numerical simulations are given to illustrate our results.
Citation: Yuwei Cao, Bing Li. Existence and global exponential stability of compact almost automorphic solutions for Clifford-valued high-order Hopfield neutral neural networks with $ D $ operator[J]. AIMS Mathematics, 2022, 7(4): 6182-6203. doi: 10.3934/math.2022344
In this paper, a class of Clifford-valued higher-order Hopfield neural networks with $ D $ operator is studied by non-decomposition method. Except for time delays, all parameters, activation functions and external inputs of this class of neural networks are Clifford-valued functions. Based on Banach fixed point theorem and differential inequality technique, we obtain the existence, uniqueness and global exponential stability of compact almost automorphic solutions for this class of neural networks. Our results of this paper are new. In addition, two examples and their numerical simulations are given to illustrate our results.
[1] | X. Z. Liu, K. L. Teo, B. J. Xu, Exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays, IEEE T. Neural Networ., 16 (2005), 1329–1339. https://doi.org/10.1109/TNN.2005.857949 doi: 10.1109/TNN.2005.857949 |
[2] | A. M. Alimi, C. Aouiti, F. Chérif, F. Dridi, M. S. M'hamdi, Dynamics and oscillations of generalized high-order Hopfield neural networks with mixed delays, Neurocomputing, 321 (2018), 274–295. https://doi.org/10.1016/j.neucom.2018.01.061 doi: 10.1016/j.neucom.2018.01.061 |
[3] | C. Aouiti, E. A. Assali, Stability analysis for a class of impulsive high-order Hopfield neural networks with leakage time-varying delays, Neural Comput. Appl., 31 (2019), 7781–7803. https://doi.org/10.1007/s00521-018-3585-z doi: 10.1007/s00521-018-3585-z |
[4] | B. Li, Y. K. Li, Existence and global exponential stability of almost automorphic solution for Clifford-valued high-order Hopfield neural networks with leakage delays, Complexity, 2019 (2019), 6751806. https://doi.org/10.1155/2019/6751806 doi: 10.1155/2019/6751806 |
[5] | Y. K. Li, J. L. Xiang, B. Li, Almost periodic solutions of quaternion-valued neutral type high-order Hopfield neural networks with state-dependent delays and leakage delays, Appl. Intell., 50 (2020), 2067–2078. https://doi.org/10.1007/s10489-020-01634-2 doi: 10.1007/s10489-020-01634-2 |
[6] | Y. K. Li, X. F. Meng, Almost automorphic solutions for quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays, J. Syst. Sci. Complex., 33 (2020), 100–121. https://doi.org/10.1007/s11424-019-8051-1 doi: 10.1007/s11424-019-8051-1 |
[7] | J. K. Hale, S. M. V. Lunel, Introduction to functional differential equations, New York: Springer, 2013. |
[8] | Y. L. Xu, Exponential stability of pseudo almost periodic solutions for neutral type cellular neural networks with D operator, Neural Process. Lett., 46 (2017), 329–342. https://doi.org/10.1007/s11063-017-9584-8 doi: 10.1007/s11063-017-9584-8 |
[9] | L. G. Yao, Global convergence of CNNs with neutral type delays and D operator, Neural Comput. Appl., 29 (2018), 105–109. https://doi.org/10.1007/s00521-016-2403-8 doi: 10.1007/s00521-016-2403-8 |
[10] | L. G. Yao, Global exponential convergence of neutral type shunting inhibitory cellular neural networks with D operator, Neural Process. Lett., 45 (2017), 401–409. https://doi.org/10.1007/s11063-016-9529-7 doi: 10.1007/s11063-016-9529-7 |
[11] | X. J. Guo, C. X. Huang, J. D. Cao, Nonnegative periodicity on high-order proportional delayed cellular neural networks involving D operator, AIMS Mathematics, 6 (2021), 2228–2243. https://doi.org/10.3934/math.2021135 doi: 10.3934/math.2021135 |
[12] | A. P. Zhang, Pseudo almost periodic solutions for neutral type SICNNs with D operator, J. Exp. Theor. Artif. Intell., 29 (2017), 795–807. https://doi.org/10.1080/0952813X.2016.1259268 doi: 10.1080/0952813X.2016.1259268 |
[13] | A. P. Zhang, Almost periodic solutions for SICNNs with neutral type proportional delays and D operators, Neural Process. Lett., 47 (2018), 57–70. https://doi.org/10.1007/s11063-017-9631-5 doi: 10.1007/s11063-017-9631-5 |
[14] | Y. K. Li, L. Zhao, X. R. Chen, Existence of periodic solutions for neutral type cellular neural networks with delays, Appl. Math. Model., 36 (2012), 1173–1183. https://doi.org/10.1016/j.apm.2011.07.090 doi: 10.1016/j.apm.2011.07.090 |
[15] | H. D. Yang, Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator, AIMS Mathematics, 6 (2021), 1865–1879. https://doi.org/10.3934/math.2021113 doi: 10.3934/math.2021113 |
[16] | Y. K. Li, N. N. Huo, B. Li, On $\mu$-pseudo almost periodic solutions for Clifford-valued neutral type neural networks with delays in the leakage term, IEEE T. Neur. Net. Lear., 32 (2021), 1365–1374. https://doi.org/10.1109/TNNLS.2020.2984655 doi: 10.1109/TNNLS.2020.2984655 |
[17] | S. Buchholz, G. Sommer, On Clifford neurons and Cliford multi-layer perceptrons, Neural Networks, 21 (2008), 925–935. https://doi.org/10.1016/j.neunet.2008.03.004 doi: 10.1016/j.neunet.2008.03.004 |
[18] | Y. Liu, P. Xu, J. Q. Lu, J. L. Liang, Global stability of Clifford valued recurrent neural networks with time delays, Nonlinear Dyn., 84 (2016), 767–777. https://doi.org/10.1007/s11071-015-2526-y doi: 10.1007/s11071-015-2526-y |
[19] | J. W. Zhu, J. T. Sun, Global exponential stability of Clifford-valued recurrent neural networks, Neurocomputing, 173 (2016), 685–689. https://doi.org/10.1016/j.neucom.2015.08.016 doi: 10.1016/j.neucom.2015.08.016 |
[20] | Y. K. Li, J. L. Xiang, Existence and global exponential stability of anti-periodic solution for Clifford-valued inertial Cohen–Grossberg neural networks with delays, Neurocomputing, 332 (2019), 259–269. https://doi.org/10.1016/j.neucom.2018.12.064 doi: 10.1016/j.neucom.2018.12.064 |
[21] | N. Huo, B. Li, Y. K. Li, Anti-periodic solutions for Clifford-valued high-order Hopfield neural networks with state-dependent and leakage delays, Int. J. Appl. Math. Comput. Sci., 30 (2020), 83–98. https://doi.org/10.34768/amcs-2020-0007 doi: 10.34768/amcs-2020-0007 |
[22] | Y. K. Li, S. P. Shen, Compact almost automorphic function on time scales and its application, Qual. Theory Dyn. Syst., 20 (2021), 86. https://doi.org/10.1007/s12346-021-00522-5 doi: 10.1007/s12346-021-00522-5 |
[23] | Y. K. Li, B. Li, Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays, DCDS-B, 2021, https://doi.org/10.3934/dcdsb.2021248 |
[24] | Y. K. Li, S. P. Shen, Pseudo almost periodic synchronization of Clifford-valued fuzzy cellular neural networks with time-varying delays on time scales, Adv. Differ. Equ., 2020 (2020), 593. https://doi.org/10.1186/s13662-020-03041-w doi: 10.1186/s13662-020-03041-w |
[25] | F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Boston: Pitman, 1982. |
[26] | S. Bochner, A new approach to almost periodicity, Proc. Natl. Acad. Sci. USA, 48 (1962), 2039–2043. https://doi.org/10.1073/pnas.48.12.2039 doi: 10.1073/pnas.48.12.2039 |
[27] | S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci. USA, 52 (1964), 907–910. https://doi.org/10.1073/pnas.52.4.907 doi: 10.1073/pnas.52.4.907 |
[28] | T. Diagana, Almost automorphic type and almost periodic type functions in abstract spaces, New York: Springer, 2013. |
[29] | B. Es-sebbar, Almost automorphic evolution equations with compact almost automorphic solutions, C. R. Math., 354 (2016), 1071–1077. https://doi.org/10.1016/j.crma.2016.10.001 doi: 10.1016/j.crma.2016.10.001 |