In this manuscript, a class of impulsive Langevin equation with Hilfer fractional derivatives is considered. Using the techniques of nonlinear functional analysis, we establish appropriate conditions and results to discuss existence, uniqueness and different types of Ulam-Hyers stability results of our proposed model, with the help of Banach's fixed point theorem. An example is provided at the end to illustrate our results.
Citation: Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada. Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives[J]. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345
[1] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[2] | Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327 |
[3] | Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives. AIMS Mathematics, 2021, 6(12): 13092-13118. doi: 10.3934/math.2021757 |
[4] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[5] | Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397 |
[6] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[7] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[8] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[9] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[10] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
In this manuscript, a class of impulsive Langevin equation with Hilfer fractional derivatives is considered. Using the techniques of nonlinear functional analysis, we establish appropriate conditions and results to discuss existence, uniqueness and different types of Ulam-Hyers stability results of our proposed model, with the help of Banach's fixed point theorem. An example is provided at the end to illustrate our results.
Hilfer [9] proposed a general operator for fractional derivative, called Hilfer fractional derivative, which combines Caputo and Riemann-Liouville fractional derivatives. Hilfer fractional derivative is performed, for example, in the theoretical simulation of dielectric relaxation in glass forming materials. Sandev et al. [28] derived the existence results of fractional diffusion equation with Hilfer fractional derivative which attained in terms of Mittag Leffler functions. Mahmudov and McKibben [16] studied the controllability of fractional dynamical equations with generalized Riemann Liouville fractional derivative by using Schauder fixed point theorem and fractional calculus. Recently, Gu and Trujillo [8] reported the existence results of fractional differential equations with Hilfer derivative based on noncompact measure method. The set of two parameters in Hilfer fractional derivative Dα1,β(Dα2,β of order 0≤α1≤1 and 0<α2<1 permits one to connect between the Caputo and Riemann-Liouville derivatives [14,34]. This set of parameters gives an extra degree of freedom on the initial conditions and produces more types of stationary states. Models with Hilfer fractional derivatives are discussed in [2,23,25,30,42,43].
Langevin equation was introduced by Paul Langevin in 1908. These equations are used to described stochastic problems in physics, defence system, image processing, chemistry, astronomy, mechanical and electrical engineering. They are also used to describe Brownian motion when the random fluctuation force is assumed to be Gaussian noise. Fractional order differential equations remove the noise efficiently as compare to integer order differential equations. For more details, see [1,6,17,20,21,22,24].
At Wisconsin university, Ulam raised a question about the stability of functional equations in the year 1940. The question of Ulam was: Under what conditions does there exist an additive mapping near an approximately additive mapping [31]. In 1941, Hyers was the first mathematician who gave partial answer to Ulam's question [13], over Banach space. Afterwards, stability of such form is known as Ulam-Hyers stability. In 1978, Rassias [19], provided a remarkable generalization of the Ulam-Hyers stability of mappings by considering variables. For more information about the topic, we refer the reader to [23,27,29,38,39,41].
Impulsive fractional differential equations describe physical sciences, social sciences and many dynamical systems. There are two types of impulsive fractional differential equations, instantaneous impulsive fractional differential equations and non-instantaneous impulsive fractional differential equations. From few decades, the theory of impulsive fractional differential equations is utilized in mechanical engineering, biology, ecology, astronomy and medicine etc. For details on impulsive fractional differential equations, see [4,5,10,11,12,15,26,32,35,37,40,44].
Recently, the existence, uniqueness and different types of Ulam-Hyers stability of nonlinear implicit fractional differential equations with Helfer's fractional derivative have received a considerable attention, see [23,29,34,39].
Wang et al. [33], studied generalized Ulam-Hyers-Rassias stability of the following fractional differential equation:
{cDα0,υx(υ)=f(υ,x(υ)),υ∈(υi,si],i=0,1,…,m,0<α<1,x(υ)=gi(υ,x(υ)),υ∈(ςi−1,υi],i=1,2,…,m. |
Zada et al. [36], studied existence, uniqueness of solutions by using Diaz Margolis's fixed point theorem and presented different types of Ulam-Hyers stability for a class of nonlinear implicit fractional differential equation with non-instantaneous integral impulses and nonlinear integral boundary conditions:
{cDα0,υx(υ)=f(υ,x(υ),cDα0,υx(υ)), υ∈(υi,si], i=0,1,…,m, 0<α<1, υ∈(0,1],x(υ)=Iαsi−1,υi(ξi(υ,x(υ))), υ∈(si−1,υi],i=1,2,…,m,x(0)=1Γα∫T0(T−ς)α−1η(ς,x(ς))dς. |
In this paper, we study a class of impulsive Langevin equation with Hilfer fractional derivatives of the form:
{Dα1,β(Dα2,β+λ)x(υ)=f(υ,x(υ)), υ∈J=[0,T], 0<α1,α2<1, 0≤ γ≤1,Δ x(υi)=Ii(x(υi)), i=1,2,…,m,I1−γx(0)=x0,γ=(α1+α2)(1−β)+β, | (1.1) |
where Dα1,β and Dα2,β represents two Hilfer fractional derivatives [9], of order α1 and α2 respectively, β determines to the type of initial condition used in the problem. Further f:J×R→R is continuous and Ii:R→R for all i=1,2,…,m, represents impulsive nonlinear mapping and Δx(υi)=x(υ+i)−x(υ−i), where x(υ+i) and x(υ−i) represent the right and the lift limits, respectively, at t=υi for i=1,2,…,m.
We recall some definitions of fractional calculus from [14,18] as follows:
Definition 2.1. The fractional integral of order α from 0 to x for the function f is
Iα0,xf(x)=1Γ(α)∫x0f(ς)(x−ς)α−1dς,x>0, α>0, |
where Γ(⋅) is the Gamma function.
Definition 2.2. The Riemman–Liouville fractional derivative of fractional order α for f is
LDα0,xf(x)=1Γ(n−α)dndυn∫x0f(ς)(x−ς)α+1−ndς,x>0, n−1<α<n. |
Definition 2.3. The Caputo derivative of fractional order α for f is
cDα0,xf(x)=1Γ(n−α)∫x0(x−ς)n−α−1fn(ς)dς,wheren=[α]+1. |
Definition 2.4. The classical Caputo derivative of order α of f is
cDα0,x=LDα0,x(f(x)−n−1∑k=0xkk!f(k)(0)),x>0, n−1<α<n. |
Definition 2.5. The Hilfer fractional derivative of order 0<α<1 and 0≤γ≤1 of function f(x) is
Dα,γf(x)=(Iγ(1−α)D(I(1−γ)(1−α)(f))(x). |
The Hilfer fractional derivative is used as an interpolator between the Riemman-Liouville and Caputo derivative.
Remark 2.1. (a) Operator Dα,γ also can be written as
Dα,γf(x)=(Iγ(1−α)D(I(1−γ)(1−α)f)(x))=Iγ(1−α)Dηf(x),η=α+γ−αγ. |
(b) If γ=0, then Dα,γ=Dα,0 is called the Riemman-Liouville fractional derivative.
(c) If γ=1, then Dα,γ=I1−αD is called the Caputo fractional derivative.
Remark 2.2. (i) If f(⋅)∈Cm([0,∞),R), then
LDα0,xf(x)=1Γ(m−α)∫x0fm(ς)(x−ς)α+1−mdς=Im−α0,xf(m)(x),x>0, m−1<α<m. |
(ii) In Definition 2.4, the integrable function f can be discontinuous. This fact can support us to consider impulsive fractional problems in the sequel.
Lemma 2.1. [18] Let α>0 and β>0, f∈L1([a,b]).
ThenIαIβf(x)=Iα+βf(x),cDα0,x(cDβ0,xf(x))=cDα+β0,xf(x) and IαDα0,xf(x)=f(x),x∈[a,b]. |
Theorem 2.1. [[3](Banach's fixed point theorem)]. Let B be a Banach space. Then any contraction mapping N:B→B has a unique fixed point.
In this section, we investigate the existence, uniqueness of solutions to the proposed Langevin equation using two Hilfer fractional derivatives.
Lemma 3.1. A function f:(0,T]×R→R is equivalent to the integral equation
x(υ)={x0Γ(γ)υγ−1+1Γ(α1+α2)∫υ0(υ−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υ0(υ−ς)α1−1x(ς)dςυ∈J0x0Γ(γ)υγ−11+1Γ(α1+α2)∫υυ1(υ−ς)α1+α2−1f(ς,x(ς))dς+1Γ(α1+α2)∫υ10(υ1−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υ10(υ1−ς)α1−1x(ς)dς−λΓ(α1)∫υυ1(υ−ς)α1−1x(ς)dς+I1(x(υ1)),υ∈J1,x0Γ(γ)υγ−1m+m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1f(ς,x(ς))dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1x(ς)dς+m∑i=1Ii(x(υi)),υ∈Jii=1,2,…,m. | (3.1) |
is the only solution of the problem (1.1).
Proof. Let x satisfies (1.1), then for any υ∈J0, there exists a constant c∈R, such that
x(υ)=c+1Γ(α1+α2)∫υ0(υ−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υ0(υ−ς)α1−1x(ς)dς. | (3.2) |
Using the condition I1−γx(0)=x0, Eq (3.2) yields that
x(υ)=x0Γ(γ)υγ−1+1Γ(α1+α2)∫υ0(υ−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υ0(υ−ς)α1−1x(ς)dς,υ∈J0. |
Similarly for υ∈J1, there exists a constant d1∈R, such that
x(υ)=d1+1Γ(α1+α2)∫υυ1(υ−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υυ1(υ−ς)α1−1x(ς)dς. |
Hence, we have
x(υ−1)=x0Γ(γ)υγ−11+1Γ(α1+α2)∫υ10(υi−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υ10(υi−ς)α1−1x(ς)dς, |
x(υ+1)=d1. |
In view of
Δ x(υ1)=x(υ+1)−x(υ−1)=I1(x(υ1)), |
we get
x(υ+1)−x(υ−1)=d1−x0Γ(γ)υγ−11−1Γ(α1+α2)∫υ10(υi−ς)α1+α2−1f(ς,x(ς))dς+λΓ(α1)∫υ10(υi−ς)α1−1x(ς)dς, |
I1(x(υ1))=d1−x0Γ(γ)υγ−11−1Γ(α1+α2)∫υ10(υi−ς)α1+α2−1f(ς,x(ς))dς+λΓ(α1)∫υ10(υi−ς)α1−1x(ς)dς, |
d1=x0Γ(γ)υγ−11+1Γ(α1+α2)∫υ10(υi−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υ10(υi−ς)β−1x(ς)dς+I1(x(υ1)). |
For this value of d1, we have
x(υ)=1Γ(α1+α2)∫υυ1(υ−ς)α1+α2−1f(ς,x(ς))dς+1Γ(α1+α2)∫υ10(υi−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υ10(υi−ς)α1−1x(ς)dς−λΓ(α1)∫υυ1(υ−ς)α1−1x(ς)dς+x0Γ(γ)υγ−11+I1(x(υ1)). |
Similarly for υ∈Ji, we get
x(υ)=x0Γ(γ)υγ−1i+m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1f(ς,x(ς))dς−m∑i=1λΓ(α1)∫υ10(υi−ς)α1−1x(ς)dς+m∑i=1Ii(x(υi)). |
Conversely, let that x satisfies (3.1), then it can be easily proved that the solution x(υ) given by (3.1) satisfies (1.1) along with its impulsive and integral boundary conditions.
Consider some assumptions as follows:
(H1) f∈C(J×R,R) is continuous.
(H2) There exists 0<Łf<1 such that
|f(υ,u)−f(υ,v)|≤Łf|u−v|, for each υ∈Ji, i=1,2,…,m, and all u,v∈R.
(H3) There exists 0<Łk<1, such that
|Ii(u)−Ii(v)|≤Łk|u−v|, for each υ∈Ji, i=1,2,…,m, and for all u,v∈R.
Theorem 3.1. Let assumptions (H1)−(H3) be satisfied and if
(mŁfΓ(α1+α2+1)Tα1+α2+mλΓα1+1Tα1−1+mŁk)<1, | (3.3) |
then (1.1) has a unique solution x in C1−γ[0,T].
Proof. We define a mapping N:C1−γ[0,T]→C1−γ[0,T]
{(Nx)(υ)=x0Γ(γ)υγ−1+1Γ(α1+α2)∫υ0(υ−ς)α1+α2−1f(ς,x(ς))dς−λΓ(α1)∫υ0(υ−ς)α1−1x(ς)dςυ∈J0,(Nx)(υ)=x0Γ(γ)υγ−1i+m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1f(ς,x(ς))dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1x(ς)dς+m∑i=1Ii(x(υi))υ∈Jii=1,2,…,m. |
For any x,y∈C1−γ[0,T] and υ∈Ji, consider the following
|(Nx)(υ)−(Ny)(υ)|≤m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1|f(ς,x(ς))−f(ς,y(ς))|dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1|x(ς)−y(ς)|dς+m∑i=1|Ii(x(υi))−Ii(y(υi))|≤m∑i=1ŁfΓ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1|x(ς)−y(ς)|dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1|x(ς)−y(ς)|dς+Łkm∑i=1|x(υ)−y(υ)|≤(mŁfΓ(α1+α2+1)(υi−υi−1)α1+α2−mλΓα1+1(υi−υi−1)α1−1+mŁk)|x(υ)−y(υ)|≤(mŁfΓ(α1+α2+1)Tα1+α2+mλΓα1+1Tα1−1+mŁk)|x(υ)−y(υ)|. |
Hence N is a contraction according to Banach's contraction theorem and so it has only one fixed point, which is the only one solution of (1.1).
Let ε>0 and φ:J→R+ be a continuous function. Consider
{|Dα1,β(Dα2,β+λ)z(υ)−f(υ,z(υ))|≤ε, υ∈Ji, i=1,2,…,q,|Δ z(υi)−Ii(z(υi))|≤ε,i=1,2,…,m, | (4.1) |
{|Dα1,β(Dα2,β+λ)z(υ)−f(υ,z(υ))|≤φ(υ), υ∈Ji, i=1,2,…,q,|Δ z(υi)−Ii(z(υi))|≤ψ,i=1,2,…,m, | (4.2) |
and
{|Dα1,β(Dα2,β+λ)z(υ)−f(υ,z(υ))|≤εφ(υ), υ∈Ji, i=1,2,…,q,|Δ z(υi)−Ii(z(υi))|≤εψ,i=1,2,…,m. | (4.3) |
Definition 4.1. The problem (1.1) is Ulam-Hyers stable if there exist a real number Cf,i,q,σ such that for each solution ε>0 and for each solution z∈C1−γ[0,T] of the inequality (4.1), there exist a solution x∈C1−γ[0,T] of the problem (1.1) such that
|z(υ)−x(υ)|≤Cf,i,q,σ ε υ∈J. | (4.4) |
Definition 4.2. The problem (1.1) is generalized Ulam-Hyers stable if there exist ϕf,i,q,σ∈C1−γ[0,T], ϕf,i,q,σ(0)=0 and ε>0 such that for each solution z∈C1−γ[0,T] of the inequality (4.1), there exist a solution x∈C1−γ[0,T] of the problem (1.1) such that
|z(υ)−x(υ)|≤ϕf,i,q,σ ε υ∈J. | (4.5) |
Remark 4.1. Keep in mind that Definition 4.1 ⇒ Definition 4.2.
Definition 4.3. The problem (1.1) is Ulam-Hyers-Rassias stable with respect to (φ,ψ) if there exist Cf,i,q,σ,φ>0 such that for each ε>0 and for each solution z∈C1−γ[0,T] of inequality (4.3) there is a solution x∈C1−γ[0,T] of the problem (1.1) with
|z(υ)−x(υ)|≤Cf,i,q,σ,φε(φ(υ)+ψ) ε υ∈J. | (4.6) |
Definition 4.4. The problem (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (φ,ψ) if there exist Cf,i,q,σ,φ>0 such that for each solution z∈C1−γ[0,T] of inequality (4.2) there is a solution x∈C1−γ[0,T] of the problem (1.1) with
|z(υ)−x(υ)|≤Cf,i,q,σ,φ(φ(υ)+ψ) ε υ∈J. | (4.7) |
Remark 4.2. It should be noted that Definition 4.3 implies Definition 4.4.
Remark 4.3. A function z∈C1−γ[0,T] is a solution of the inequality (4.1) if and only if there exists a function g∈C1−γ[0,T] and a sequence gi,i=1,2,…,m, depending on g, such that
(a) |g(υ)|≤ε, |gi|≤ε υ∈Ji, i=1,2,…,m,
(b) Dα1,β(Dα2,β+λ)z(υ)=f(υ,z(υ))+g(υ), υ∈Ji, i=1,2,…,m,
(c) Δ x(υi)=Ii(x(υi))+gi, υ∈Ji, i=1,2,…,m,
Remark 4.4. A function z∈C1−γ[0,T] satisfies (4.2) if and only if there exists g∈C1−γ[0,T] and a sequence gi,i=1,2,…,m, depending on g, such that
(a) |g(υ)|≤φ(υ), |gi|≤ψ υ∈Ji, i=1,2,…,m,
(b) Dα1,β(Dα2,β+λ)z(υ)=f(υ,z(υ))+g(υ), υ∈Ji, i=1,2,…,m,
(c) Δ x(υi)=Ii(x(υi))+gi, υ∈Ji, i=1,2,…,m.
Remark 4.5. A function z∈C1−γ[0,T] satisfies (4.2) if and only if there exists g∈C1−γ[0,T] and a sequence gi,i=1,2,…,m, depending on g, such that
(a) |g(υ)|≤εφ(υ), |gi|≤εψ υ∈Ji, i=1,2,…,m,
(b) Dα1,β(Dα2,β+λ)z(υ)=f(υ,z(υ))+g(υ), υ∈Ji, i=1,2,…,m,
(c) Δ x(υi)=Ii(x(υi))+gi, υ∈Ji, i=1,2,…,m.
Theorem 4.1. If the assumptions (H1)–(H3) and the inequality (3.3) hold, then Eq (1.1) is Ulam-Hyers stable and consequently generalized Ulam-Hyers stable.
Proof. Let y∈C1−γ[0,T] satisfies (4.1) and let x be the only one solution of
{Dα1,β(Dα2,β+λ)x(υ)=f(υ,x(υ)), υ∈J=[0,T], 0<α1,α2<1, 0≤ γ≤1,Δ x(υi)=Ii(x(υi)), i=1,2,…,m,I1−γx(0)=x0,γ=(α1+α2)(1−β)+β. |
By Lemma 3.1, we have for each υ∈Ji
x(υ)=x0Γ(γ)υγ−1m+m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1f(ς,x(ς))dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1x(ς)dς+m∑i=1Ii(x(υi))υ∈Jii=1,2,…,m. |
Since y satisfies inequality (4.1), so by Remark 4.3, we get
{Dα1,β(Dα2,β+λ)y(υ)=f(υ,y(υ))+gi, υ∈J=[0,T], 0<α1,α2<1, 0≤ γ≤1,Δ x(υi)=Ii(y(υi))+gi,, i=1,2,…,m,I1−γy(0)=y0,γ=(α1+α2)(1−β)+β. | (4.8) |
Obviously the solution of (4.8) will be
y(υ)={y0Γ(γ)υγ−1+1Γ(α1+α2)∫υ0(υ−ς)α1+α2−1f(ς,y(ς))dς−λΓ(α1)∫υ0(υ−ς)α1−1y(ς)dς+1Γ(α1+α2)∫υ0(υ−ς)α1+α2−1gi(ς)dς−λΓ(α1)∫υ0(υ−ς)α1−1gi(ς)dςυ∈J0x0Γ(γ)υγ−1m+m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1f(ς,y(ς))dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1y(ς)dς+m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1gi(ς)dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1gi(ς)dς+m∑i=1Ii(x(υi))+m∑i=1giυ∈Jii=1,2,…,m. |
Therefore, for each υ∈Ji, we have the following
|x(υ)−y(υ)|≤m∑i=1∫υiυi−1(υi−ς)α1+α2−1Γ(α1+α2)|f(ς,x(ς))−f(ς,y(ς))|dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1|x(ς)−y(ς)|dς+m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1gi(ς)dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1gi(ς)dς+m∑i=1|Ii(x(υi))−Ii(y(υi))|+m∑i=1gi≤m∑i=1ŁfΓ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1|x(ς)−y(ς)|dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1|x(ς)−y(ς)|dς+m∑i=1εΓ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1dς−m∑i=1ελΓ(α1)∫υiυi−1(υi−ς)α1−1dς+Łkm∑i=1|x(υ)−y(υ)|+m∑i=1ε≤(mŁfΓ(α1+α2+1)(T)α1+α2−mλΓα1+1(T)α1+mŁk)|x(υ)−y(υ)|+mεΓ(α1+α2+1)(T)α1+α2−mελΓα1+1(T)α1+mε, |
which implies that
|x(υ)−y(υ)|≤ε(mΓ(α1+α2+1)(T)α1+α2−mλΓα1+1(T)α1+m1−(mŁfΓ(α1+α2+1)(T)α1+α2−mλΓα1+1(T)α1+mŁk)). |
Thus
|x(υ)−y(υ)|≤εCf,g,α1,α2, |
where
Cf,g,α1,α2=mΓ(α1+α2+1)(T)α1+α2−mλΓα1+1(T)α1+m1−(mŁfΓ(α1+α2+1)(T)α1+α2−mλΓα1+1(T)α1+mŁk). |
So Eq (1.1) is Ulam-Hyers stable and if we set ϕ(ε)=εCf,g,α1,α2, ϕ(0)=0, then Eq (1.1) is generalized Ulam-Hyers stable.
Theorem 4.2. If the assumptions (H1)–(H3) and the inequality (3.3) are satisfied, then the problem (1.1) is Ulam-Hyers-Rassias stable with respect to (φ,ψ), consequently generalized Ulam-Hyers-Rassias stable.
Proof. Let y∈C1−γ[0,T] be a solution of the inequality (4.3) and let x be the only one solution of the following problem
{Dα1,β(Dα2,β+λ)x(υ)=f(υ,x(υ)), υ∈J=[0,T], 0<α1,α2<1, 0≤ γ≤1,Δ x(υi)=Ii(x(υi)), i=1,2,…,m,I1−γx(0)=x0,γ=(α1+α2)(1−β)+β. |
From Theorem 4.1, for all υ∈Ji, we get
|x(υ)−y(υ)|≤m∑i=1∫υiυi−1(υi−ς)α1+α2−1Γ(α1+α2)|f(ς,x(ς))−f(ς,y(ς))|dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1|x(ς)−y(ς)|dς+m∑i=11Γ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1gi(ς)dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1gi(ς)dς+m∑i=1|Ii(x(υi))−Ii(y(υi))|+m∑i=1gi≤m∑i=1ŁfΓ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1|x(ς)−y(ς)|dς−m∑i=1λΓ(α1)∫υiυi−1(υi−ς)α1−1|x(ς)−y(ς)|dς+m∑i=1εΓ(α1+α2)∫υiυi−1(υi−ς)α1+α2−1φ(ς)dς−m∑i=1ελΓ(α1)∫υiυi−1(υi−ς)α1−1φ(ς)dς+Łkm∑i=1|x(υ)−y(υ)|+m∑i=1ψ≤(mŁfΓ(α1+α2+1)(υi−υi−1)α1+α2−mλΓα1+1(υi−υi−1)α1+mŁk)|x(υ)−y(υ)|+mελφφ(υ)Γ(α1+α2+1)(υi−υi−1)α1+α2−mελφφ(υ)λΓα1+1(υi−υi−1)α1,+mεψ, |
which implies that
|x(υ)−y(υ)|≤ε(mλφφ(υ)Γ(α1+α2+1)(υi−υi−1)α1+α2−mλφφ(υ)λΓα1+1(υi−υi−1)α1+mψ1−(mŁfΓ(α1+α2+1)(υi−υi−1)α1+α2−mλΓα1+1(υi−υi−1)α1+mŁk))≤(mλφΓ(α1+α2+1)(T)α1+α2−mλφλΓα1+1(T)α1+m1−(mŁfΓ(α1+α2+1)(T)α1+α2−mλΓα1+1(T)α1+mŁk))ε(φ(υ)+ψ). |
Thus
|x(υ)−y(υ)|≤Cf,g,α1,α2,φ,ψε(φ(υ)+ψ), |
where
Cf,g,α1,α2,φ,ψ=(mλφΓ(α1+α2+1)(T)α1+α2−mλφλΓα1+1(T)α1+m1−(mŁfΓ(α1+α2+1)(T)α1+α2−mλΓα1+1(T)α1+mŁk)). |
Hence (1.1) is Ulam-Hyers-Rassias stable and is obviously generalized Ulam-Hyers-Rassias stable.
Finally we give an example to illustrate our main result.
Example 4.1.
{D(12,12)(D(13,12)+12)x(υ)=|x(υ)|8+eυ+υ2, υ∈J=[0,1],Iix(12)=x|(12)|70+|x(12)|, i=1,2,…,m,I1−γx(0)=0,γ=(α1+α2)(1−β)+β. | (4.9) |
Let J0=[0,12], J1=[12,1] α1=12, α2=13, λ=λφ=12, Łf=Łk=190e2 and m=T=1.
Obviously
(mŁfΓ(α1+α2+1)Tα1+α2+mλΓα1+1Tα1−1+mŁk)<1. |
Thus, thanks to Theorem 3.1, the given problem (4.9) has a unique solution. Further the conditions of Theorem 4.1 are satisfied so the solution of the given problem (4.9) is Ulam-Hyers stable and generalized Ulam-Hyers stable. Further it is also easy to check the conditions of Theorem 4.2 hold and thus the problem (4.9) is Ulam-Hyers-Rassias stable and consequently generalized Ulam-Hyers-Rassias stable.
In this article, we consider a class of impulsive Langevin equation with Hilfer fractional derivative. Some conditions are made to beat the hurdles to investigate the existence, uniqueness and to discuss different types of Ulam-Hyers stability of our considered model, using Banach's fixed point theorem.
The authors declare that they have no competing interest regarding this research work.
[1] |
B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real, 13 (2012), 599–602. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052
![]() |
[2] |
I. G. Ameen, M. A. Zaky, E. H. Doha, Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative, Comput. Appl. Math., 392 (2021), 113468. https://doi.org/10.1016/j.cam.2021.113468 doi: 10.1016/j.cam.2021.113468
![]() |
[3] |
Z. Ali, F. Rabiei, K. Shah, On Ulam's type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions, J. Nonlinear Sci. Appl., 10 (2017), 4760–4775. https://doi.org/10.22436/jnsa.010.09.19 doi: 10.22436/jnsa.010.09.19
![]() |
[4] |
A. H. Bhrawy, M. A. Zaky, R. A. V. Gorder, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer Algor., 71 (2016), 151–180. https://doi.org/10.1007/s11075-015-9990-9 doi: 10.1007/s11075-015-9990-9
![]() |
[5] |
A. H. Bhrawy, M. A. Zaky, Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrdinger equations, Comput. Math. Appl., 73 (2017), 1100–1117. https://doi.org/10.1016/j.camwa.2016.11.019 doi: 10.1016/j.camwa.2016.11.019
![]() |
[6] |
K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 061104. https://doi.org/10.1103/PhysRevE.73.061104 doi: 10.1103/PhysRevE.73.061104
![]() |
[7] |
K. M. Furati, M. D. Kassim, N. e. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
![]() |
[8] |
H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
![]() |
[9] | R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing, 2000. |
[10] |
W. Hu, Q. Zhu, H. R. Karim, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE T. Automat. Contr., 64 (2019), 5207–5213. https://doi.org/10.1109/TAC.2019.2911182 doi: 10.1109/TAC.2019.2911182
![]() |
[11] |
W. Hu, Q. Zhu, Stability criteria for impulsive stochastic functional differential systems with distributed-delay dependent impulsive effects, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 2027–2032. https://doi.org/10.1109/TSMC.2019.2905007 doi: 10.1109/TSMC.2019.2905007
![]() |
[12] |
W. Hu, Q. Zhu, Stability analysis of impulsive stochastic delayed differential systems with unbounded delays, Syst. Control Lett., 136 (2020), 104606. https://doi.org/10.1016/j.sysconle.2019.104606 doi: 10.1016/j.sysconle.2019.104606
![]() |
[13] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
![]() |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equation, Elsevier, 2006. |
[15] |
N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63 (2013), 1289–1310. https://doi.org/10.1007/s00025-012-0269-3 doi: 10.1007/s00025-012-0269-3
![]() |
[16] |
N. I. Mahmudov, M. A. McKibben, On the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative, J. Funct. Space., 2015 (2015), 263823. https://doi.org/10.1155/2015/263823 doi: 10.1155/2015/263823
![]() |
[17] | F. Mainardi, P. Pironi, The fractional langevin equation: brownian motion revisited, Extracta Math., 11 (1996), 140–154. |
[18] | I. Podlubny, Fractional differential equations, 1999. |
[19] |
T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
![]() |
[20] |
R. Rizwan, Existence theory and stability snalysis of fractional Langevin equation, Int. J. Nonlin. Sci. Num., 20 (2019), 833–848. https://doi.org/10.1515/ijnsns-2019-0053 doi: 10.1515/ijnsns-2019-0053
![]() |
[21] |
R. Rizwan, J. R. Lee, C. Park, A. Zada, Switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives, AIMS Math., 6 (2021), 13092–13118. https://doi.org/10.3934/math.2021757 doi: 10.3934/math.2021757
![]() |
[22] |
R. Rizwan, A. Zada, Existence theory and Ulam's stabilities of fractional Langevin equation, Qual. Theory Dyn. Syst., 20 (2021), 57. https://doi.org/10.1007/s12346-021-00495-5 doi: 10.1007/s12346-021-00495-5
![]() |
[23] | R. Rizwan, A. Zada, H. Waheed, U. Riaz, Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives, Int. J. Nonlin. Sci. Num., 2021 (2021). https: //doi.org/10.1515/ijnsns-2020-0240 |
[24] |
R. Rizwan, A. Zada, M. Ahmad, S. O. Shah, H. Waheed, Existence theory and stability analysis of switched coupled system of nonlinear implicit impulsive Langevin equations with mixed derivatives, Math. Method. Appl. Sci., 44 (2021), 8963–8985. https://doi.org/10.1002/mma.7324 doi: 10.1002/mma.7324
![]() |
[25] |
R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses, Adv. Differ. Equ., 2019 (2019), 85. https://doi.org/10.1186/s13662-019-1955-1 doi: 10.1186/s13662-019-1955-1
![]() |
[26] |
R. Rizwan, A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Method. App. Sci., 43 (2020), 427–442. https://doi.org/10.1002/mma.5902 doi: 10.1002/mma.5902
![]() |
[27] | I. A. Rus, Ulam stability of ordinary differential equations, Stud. U. Babes Bol. Mat., 54 (2009), 125–133. |
[28] |
T. Sandev, R. Metzler, Z. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A. Math. Theor., 44 (2011), 255203. https://doi.org/10.1088/1751-8113/44/25/255203 doi: 10.1088/1751-8113/44/25/255203
![]() |
[29] |
S. O. Shah, A. Zada, A. E. Hamza, Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qual. Theory Dyn. Syst., 18 (2019), 825–840. https://doi.org/10.1007/s12346-019-00315-x doi: 10.1007/s12346-019-00315-x
![]() |
[30] |
S. O. Shah, A. Zada, M. Muzamil, M. Tayyab, R. Rizwan, On the Bielecki-Ulam's type stability results of first order nonlinear impulsive delay dynamic systems on time scales, Qual. Theory Dyn. Syst., 19 (2020), 98. https://doi.org/10.1007/s12346-020-00436-8 doi: 10.1007/s12346-020-00436-8
![]() |
[31] | S. M. Ulam, A collection of mathematical problems, Interscience Publishers, 1960. |
[32] |
J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. https://doi.org/10.1016/j.camwa.2012.02.021 doi: 10.1016/j.camwa.2012.02.021
![]() |
[33] |
J. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649–657. https://doi.org/10.1016/j.amc.2014.06.002 doi: 10.1016/j.amc.2014.06.002
![]() |
[34] |
X. Wang, R. Rizwan, J. R. Lee, A. Zada, S. O. Shah, Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives, AIMS Math., 6 (2021), 4915–4929. https://doi.org/10.3934/math.2021288 doi: 10.3934/math.2021288
![]() |
[35] |
A. Zada, S. Ali, Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlin. Sci. Num., 19 (2018), 763–774. https://doi.org/10.1515/ijnsns-2018-0040 doi: 10.1515/ijnsns-2018-0040
![]() |
[36] |
A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 317. https://doi.org/10.1186/s13662-017-1376-y doi: 10.1186/s13662-017-1376-y
![]() |
[37] |
A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Method. Appl. Sci., 40 (2017), 5502–5514. https://doi.org/10.1002/mma.4405 doi: 10.1002/mma.4405
![]() |
[38] |
A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gr¨onwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60–65. https://doi.org/10.1016/j.amc.2019.01.014 doi: 10.1016/j.amc.2019.01.014
![]() |
[39] |
A. Zada, R. Rizwan, J. Xu, Z. Fu, On implicit impulsive Langevin equation involving mixed order derivatives, Adv. Differ. Equ., 2019 (2019), 489. https://doi.org/10.1186/s13662-019-2408-6 doi: 10.1186/s13662-019-2408-6
![]() |
[40] | A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay dierential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205. |
[41] |
A. Zada, O. Shah, R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518. https://doi.org/10.1016/j.amc.2015.09.040 doi: 10.1016/j.amc.2015.09.040
![]() |
[42] |
M. A. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer. Math., 145 (2019), 429–457. https://doi.org/10.1016/j.apnum.2019.05.008 doi: 10.1016/j.apnum.2019.05.008
![]() |
[43] |
M. A. Zaky, An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75 (2018), 2243–2258. https://doi.org/10.1016/j.camwa.2017.12.004 doi: 10.1016/j.camwa.2017.12.004
![]() |
[44] |
M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525–3538. https://doi.org/10.1007/s40314-017-0530-1 doi: 10.1007/s40314-017-0530-1
![]() |
1. | Hira Waheed, Akbar Zada, Rizwan Rizwan, Choonkil Park, Niamat Ullah, Qualitative analysis of coupled system of sequential fractional integrodifferential equations, 2022, 7, 2473-6988, 8012, 10.3934/math.2022447 | |
2. | Rizwan Rizwan, Fengxia Liu, Zhiyong Zheng, Choonkil Park, Siriluk Paokanta, Existence theory and Ulam’s stabilities for switched coupled system of implicit impulsive fractional order Langevin equations, 2023, 2023, 1687-2770, 10.1186/s13661-023-01785-4 | |
3. | Mi Zhou, Lu Zhang, Well-Posedness of a Class of Fractional Langevin Equations, 2024, 23, 1575-5460, 10.1007/s12346-024-00956-7 | |
4. | Syed Omar Shah, Rizwan Rizwan, Yonghui Xia, Akbar Zada, Existence, uniqueness, and stability analysis of fractional Langevin equations with anti‐periodic boundary conditions, 2023, 46, 0170-4214, 17941, 10.1002/mma.9539 |