Research article

Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives

  • Received: 24 August 2021 Revised: 12 January 2022 Accepted: 12 January 2022 Published: 18 January 2022
  • MSC : 26A33, 34A08, 34B27

  • In this manuscript, a class of impulsive Langevin equation with Hilfer fractional derivatives is considered. Using the techniques of nonlinear functional analysis, we establish appropriate conditions and results to discuss existence, uniqueness and different types of Ulam-Hyers stability results of our proposed model, with the help of Banach's fixed point theorem. An example is provided at the end to illustrate our results.

    Citation: Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada. Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives[J]. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345

    Related Papers:

  • In this manuscript, a class of impulsive Langevin equation with Hilfer fractional derivatives is considered. Using the techniques of nonlinear functional analysis, we establish appropriate conditions and results to discuss existence, uniqueness and different types of Ulam-Hyers stability results of our proposed model, with the help of Banach's fixed point theorem. An example is provided at the end to illustrate our results.



    加载中


    [1] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real, 13 (2012), 599–602. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052
    [2] I. G. Ameen, M. A. Zaky, E. H. Doha, Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative, Comput. Appl. Math., 392 (2021), 113468. https://doi.org/10.1016/j.cam.2021.113468 doi: 10.1016/j.cam.2021.113468
    [3] Z. Ali, F. Rabiei, K. Shah, On Ulam's type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions, J. Nonlinear Sci. Appl., 10 (2017), 4760–4775. https://doi.org/10.22436/jnsa.010.09.19 doi: 10.22436/jnsa.010.09.19
    [4] A. H. Bhrawy, M. A. Zaky, R. A. V. Gorder, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer Algor., 71 (2016), 151–180. https://doi.org/10.1007/s11075-015-9990-9 doi: 10.1007/s11075-015-9990-9
    [5] A. H. Bhrawy, M. A. Zaky, Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrdinger equations, Comput. Math. Appl., 73 (2017), 1100–1117. https://doi.org/10.1016/j.camwa.2016.11.019 doi: 10.1016/j.camwa.2016.11.019
    [6] K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 061104. https://doi.org/10.1103/PhysRevE.73.061104 doi: 10.1103/PhysRevE.73.061104
    [7] K. M. Furati, M. D. Kassim, N. e. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
    [8] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [9] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing, 2000.
    [10] W. Hu, Q. Zhu, H. R. Karim, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE T. Automat. Contr., 64 (2019), 5207–5213. https://doi.org/10.1109/TAC.2019.2911182 doi: 10.1109/TAC.2019.2911182
    [11] W. Hu, Q. Zhu, Stability criteria for impulsive stochastic functional differential systems with distributed-delay dependent impulsive effects, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 2027–2032. https://doi.org/10.1109/TSMC.2019.2905007 doi: 10.1109/TSMC.2019.2905007
    [12] W. Hu, Q. Zhu, Stability analysis of impulsive stochastic delayed differential systems with unbounded delays, Syst. Control Lett., 136 (2020), 104606. https://doi.org/10.1016/j.sysconle.2019.104606 doi: 10.1016/j.sysconle.2019.104606
    [13] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equation, Elsevier, 2006.
    [15] N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63 (2013), 1289–1310. https://doi.org/10.1007/s00025-012-0269-3 doi: 10.1007/s00025-012-0269-3
    [16] N. I. Mahmudov, M. A. McKibben, On the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative, J. Funct. Space., 2015 (2015), 263823. https://doi.org/10.1155/2015/263823 doi: 10.1155/2015/263823
    [17] F. Mainardi, P. Pironi, The fractional langevin equation: brownian motion revisited, Extracta Math., 11 (1996), 140–154.
    [18] I. Podlubny, Fractional differential equations, 1999.
    [19] T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
    [20] R. Rizwan, Existence theory and stability snalysis of fractional Langevin equation, Int. J. Nonlin. Sci. Num., 20 (2019), 833–848. https://doi.org/10.1515/ijnsns-2019-0053 doi: 10.1515/ijnsns-2019-0053
    [21] R. Rizwan, J. R. Lee, C. Park, A. Zada, Switched coupled system of nonlinear impulsive Langevin equations with mixed derivatives, AIMS Math., 6 (2021), 13092–13118. https://doi.org/10.3934/math.2021757 doi: 10.3934/math.2021757
    [22] R. Rizwan, A. Zada, Existence theory and Ulam's stabilities of fractional Langevin equation, Qual. Theory Dyn. Syst., 20 (2021), 57. https://doi.org/10.1007/s12346-021-00495-5 doi: 10.1007/s12346-021-00495-5
    [23] R. Rizwan, A. Zada, H. Waheed, U. Riaz, Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives, Int. J. Nonlin. Sci. Num., 2021 (2021). https: //doi.org/10.1515/ijnsns-2020-0240
    [24] R. Rizwan, A. Zada, M. Ahmad, S. O. Shah, H. Waheed, Existence theory and stability analysis of switched coupled system of nonlinear implicit impulsive Langevin equations with mixed derivatives, Math. Method. Appl. Sci., 44 (2021), 8963–8985. https://doi.org/10.1002/mma.7324 doi: 10.1002/mma.7324
    [25] R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses, Adv. Differ. Equ., 2019 (2019), 85. https://doi.org/10.1186/s13662-019-1955-1 doi: 10.1186/s13662-019-1955-1
    [26] R. Rizwan, A. Zada, Nonlinear impulsive Langevin equation with mixed derivatives, Math. Method. App. Sci., 43 (2020), 427–442. https://doi.org/10.1002/mma.5902 doi: 10.1002/mma.5902
    [27] I. A. Rus, Ulam stability of ordinary differential equations, Stud. U. Babes Bol. Mat., 54 (2009), 125–133.
    [28] T. Sandev, R. Metzler, Z. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A. Math. Theor., 44 (2011), 255203. https://doi.org/10.1088/1751-8113/44/25/255203 doi: 10.1088/1751-8113/44/25/255203
    [29] S. O. Shah, A. Zada, A. E. Hamza, Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qual. Theory Dyn. Syst., 18 (2019), 825–840. https://doi.org/10.1007/s12346-019-00315-x doi: 10.1007/s12346-019-00315-x
    [30] S. O. Shah, A. Zada, M. Muzamil, M. Tayyab, R. Rizwan, On the Bielecki-Ulam's type stability results of first order nonlinear impulsive delay dynamic systems on time scales, Qual. Theory Dyn. Syst., 19 (2020), 98. https://doi.org/10.1007/s12346-020-00436-8 doi: 10.1007/s12346-020-00436-8
    [31] S. M. Ulam, A collection of mathematical problems, Interscience Publishers, 1960.
    [32] J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. https://doi.org/10.1016/j.camwa.2012.02.021 doi: 10.1016/j.camwa.2012.02.021
    [33] J. Wang, Y. Zhou, Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649–657. https://doi.org/10.1016/j.amc.2014.06.002 doi: 10.1016/j.amc.2014.06.002
    [34] X. Wang, R. Rizwan, J. R. Lee, A. Zada, S. O. Shah, Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives, AIMS Math., 6 (2021), 4915–4929. https://doi.org/10.3934/math.2021288 doi: 10.3934/math.2021288
    [35] A. Zada, S. Ali, Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlin. Sci. Num., 19 (2018), 763–774. https://doi.org/10.1515/ijnsns-2018-0040 doi: 10.1515/ijnsns-2018-0040
    [36] A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 317. https://doi.org/10.1186/s13662-017-1376-y doi: 10.1186/s13662-017-1376-y
    [37] A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Method. Appl. Sci., 40 (2017), 5502–5514. https://doi.org/10.1002/mma.4405 doi: 10.1002/mma.4405
    [38] A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Gr$\ddot{o}$nwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2019), 60–65. https://doi.org/10.1016/j.amc.2019.01.014 doi: 10.1016/j.amc.2019.01.014
    [39] A. Zada, R. Rizwan, J. Xu, Z. Fu, On implicit impulsive Langevin equation involving mixed order derivatives, Adv. Differ. Equ., 2019 (2019), 489. https://doi.org/10.1186/s13662-019-2408-6 doi: 10.1186/s13662-019-2408-6
    [40] A. Zada, S. O. Shah, Hyers-Ulam stability of first-order non-linear delay dierential equations with fractional integrable impulses, Hacet. J. Math. Stat., 47 (2018), 1196–1205.
    [41] A. Zada, O. Shah, R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518. https://doi.org/10.1016/j.amc.2015.09.040 doi: 10.1016/j.amc.2015.09.040
    [42] M. A. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer. Math., 145 (2019), 429–457. https://doi.org/10.1016/j.apnum.2019.05.008 doi: 10.1016/j.apnum.2019.05.008
    [43] M. A. Zaky, An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75 (2018), 2243–2258. https://doi.org/10.1016/j.camwa.2017.12.004 doi: 10.1016/j.camwa.2017.12.004
    [44] M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525–3538. https://doi.org/10.1007/s40314-017-0530-1 doi: 10.1007/s40314-017-0530-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1992) PDF downloads(94) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog