In this manuscript, we consider a class of nonlinear Langevin equations involving two different fractional orders in the frame of Caputo fractional derivative with respect to another monotonic function $ \vartheta $ with antiperiodic boundary conditions. The existence and uniqueness results are proved for the suggested problem. Our approach is relying on properties of $ \vartheta $-Caputo's derivative, and implementation of Krasnoselskii's and Banach's fixed point theorem. At last, we discuss the Ulam-Hyers stability criteria for a nonlinear fractional Langevin equation. Some examples justifying the results gained are provided. The results are novel and provide extensions to some of the findings known in the literature.
Citation: Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad. On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions[J]. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
In this manuscript, we consider a class of nonlinear Langevin equations involving two different fractional orders in the frame of Caputo fractional derivative with respect to another monotonic function $ \vartheta $ with antiperiodic boundary conditions. The existence and uniqueness results are proved for the suggested problem. Our approach is relying on properties of $ \vartheta $-Caputo's derivative, and implementation of Krasnoselskii's and Banach's fixed point theorem. At last, we discuss the Ulam-Hyers stability criteria for a nonlinear fractional Langevin equation. Some examples justifying the results gained are provided. The results are novel and provide extensions to some of the findings known in the literature.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Sudies, Vol. 204, Amsterdam, Netherlands: Elsevier Science B.V., 2006. |
[2] | I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999. |
[3] | R. L. Magin, Fractional Calculus in Bioengineering, Danbury: Begell House Publishers, 2006. |
[4] | K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Liouville-Caputo Type, Berlin: Springer, 2010. |
[5] | Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore: World Scientific, 2014. |
[6] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[7] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92. |
[8] | A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763. doi: 10.2298/TSCI160112019H |
[9] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006 |
[10] | F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transforms, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 709–722. |
[11] | J. V. C. Sousa, E. C. D. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simula., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005 |
[12] | A. Fernandez, M. A. Ozarslan, D, Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput., 354 (2019), 248–265. doi: 10.1016/j.amc.2019.02.045 |
[13] | P. Langevin, On the theory of Brownian motion, C. R. Acad. Sci., 146 (1908), 530–533 |
[14] | K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 061104. doi: 10.1103/PhysRevE.73.061104 |
[15] | K. S. Fa, Fractional Langevin equation and Riemann-Liouville fractional derivative, Eur. Phys. J. E, 24 (2007), 139–143. doi: 10.1140/epje/i2007-10224-2 |
[16] | R. F. Camargo, Ary O. Chiacchio, R. Charnet, E. Capelas de Oliveira, Solution of the fractional Langevin equation and the Mittag-Leffler functions, J. Math. Phys., 50 (2009), 063507. doi: 10.1063/1.3152608 |
[17] | S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. doi: 10.1016/j.physleta.2008.08.045 |
[18] | A. Chen, Y. Chen, Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions, Boundary Value Probl., 2011 (2011), 516481. |
[19] | C. Torres, Existence of solution for fractional Langevin equation: Variational approach, Electron. J. Qualitative Theory Differ. Equations, 54 (2014), 1–14. |
[20] | A. Berhail, N. Tabouche, M. M. Matar, J, Alzabut, Boundary value problem defined by system of generalized Sturm-Liouville and Langevin Hadamard fractional differential equations, Math. Methods Appl. Sci., 2020 (2020), 1–13. Available from: https://doi.org/10.1002/mma.6507. |
[21] | W. T. Coffey, Yu. P. Kalmykov, J. T. Waldron, The Langevin equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, World Scientific Series in Contemporary Chemical Physics, 2 Eds., Vol. 14, N. J.: World Scientific Publishing Co., Inc., 2004. |
[22] | B. Ahmad, Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equations, 2010 (2010), 649486. |
[23] | B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., 13 (2012), 599–606. doi: 10.1016/j.nonrwa.2011.07.052 |
[24] | A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Existence and stability analysis of solutions for fractional Langevin equation with nonlocal integral and anti-periodic type boundary conditions, Fractals, 28 (2020). Available from: https://doi.org/10.1142/S0218348X2040006X. |
[25] | B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava, S. K. Ntouyas, The Langevin equation in terms of generalized Liouville–Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral, Mathematics, 7 (2019), 533. doi: 10.3390/math7060533 |
[26] | A. Seemab, J. Alzabut, Y. Adjabi, M. S. Abdo, Langevin equation with nonlocal boundary conditions involving a $\vartheta$–Caputo fractional operator, 2020. Available from: https://arXiv.org/abs/2006.00391. |
[27] | A. Salem, M. Alnegga, Fractional Langevin equations with multi-point and non-local integral boundary conditions, Cogent Math. Stat., 7 (2020), 1758361. Available from: https://doi.org/10.1080/25742558.2020.1758361. |
[28] | A. Alsaedi, B. Ahmad, M. Alghanmi, S. K. Ntouyas, On a generalized Langevin type nonlocal fractional integral multivalued problem, Mathematics, 7 (2019), 1015. doi: 10.3390/math7111015 |
[29] | A. Devi, A. Kumar, Existence of solutions for fractional Langevin equation involving generalized Caputo derivative with periodic boundary conditions, AIP Conf. Proc., 2214 (2020), 020026. doi: 10.1063/5.0003365 |
[30] | A. Salem, N. Mshary, On the existence and uniqueness of solution to fractional-order Langevin equation, Adv. Math. Phys., 2020 (2020). |
[31] | H. A. Wahash, M. S. Abdo, A. M. Saeed, S. K. Panchal, Singular fractional differential equations with $\psi$-Caputo operator and modified Picard's iterative method, Appl. Math. E-Notes, 20 (2020), 215–229. |
[32] | M. S. Abdo, S. T. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for $\psi$-Hilfer fractional integrodifferential equations, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1757–1780. doi: 10.1007/s11868-020-00355-x |
[33] | K. D. Kucche, A. D. Mali, J. V. C. Sousa, On the nonlinear $\psi$-Hilfer fractional differential equations, Comput. Appl. Math., 38 (2019), 1–25. doi: 10.1007/s40314-019-0767-y |
[34] | J. V. D. C. Sousa, E. Capelas de Oliveira, Existence, uniqueness, estimation and continuous dependence of the solutions of a nonlinear integral and an integrodifferential equations of fractional order, 2018. Available from: https://arXiv.org/abs/1806.01441. |
[35] | J. V. D. C Sousa, E. C. de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\vartheta $ -Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), 96. doi: 10.1007/s11784-018-0587-5 |
[36] | M. S. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, J. Math. Anal. Model., 1 (2020), 33–46. doi: 10.48185/jmam.v1i1.2 |
[37] | H. A. Wahash, S. K. Panchal, Positive solutions for generalized two-term fractional differential equations with integral boundary conditions, J. Math. Anal. Model., 1 (2020), 47–63. doi: 10.48185/jmam.v1i1.35 |
[38] | M. S. Abdo, K. Shah, S. K. Panchal, H. A. Wahash, Existence and Ulam stability results of a coupled system for terminal value problems involving $\vartheta $-Hilfer fractional operator, Adv. Differ. Equations, 2020 (2020), 316. doi: 10.1186/s13662-020-02775-x |
[39] | D. Luo, Z. Luo, H. Qiu, Existence and Hyers-Ulam stability of solutions for a mixed fractional-order nonlinear delay difference equation with parameters, Math. Probl. Eng., 2020 (2020), 9372406. |
[40] | D. Luo, A. Zada, S. Shaleena, M. Ahmad, Analysis of a coupled system of fractional differential equations with non-separated boundary conditions, Adv. Differ. Equations, 2020 (2020), 590. doi: 10.1186/s13662-020-03045-6 |
[41] | D. Luo, Z. Luo, Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math. Slovaca, 70 (2020), 1231–1248. doi: 10.1515/ms-2017-0427 |
[42] | A. Boutiara, M. S. Abdo, M. Benbachir, Existence results for $ \vartheta$-Caputo fractional neutral functional integro-differential equations with finite delay, Turkish J. Math., 44 (2020), 2380–2401. doi: 10.3906/mat-2010-9 |
[43] | A. Boutiara, S. Etemad, A. Hussain, S. Rezapour, The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving $\varphi$-Caputo fractional operators, Adv. Differ. Equations, 2021 (2021), 95. doi: 10.1186/s13662-021-03253-8 |
[44] | R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci., 2018 (2018), 336–352. |
[45] | A, Granas, J. Dugundji, Fixed Point Theory, Springer: New York, 2003. |
[46] | M. A. Krasnoselskii, Two remarks on the method of successive approximations, Usp. Mat. Nauk, 10 (1955), 123–127. |