Research article

On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions

  • Received: 16 December 2020 Accepted: 11 March 2021 Published: 18 March 2021
  • MSC : 26A33, 34A60

  • In this manuscript, we consider a class of nonlinear Langevin equations involving two different fractional orders in the frame of Caputo fractional derivative with respect to another monotonic function $ \vartheta $ with antiperiodic boundary conditions. The existence and uniqueness results are proved for the suggested problem. Our approach is relying on properties of $ \vartheta $-Caputo's derivative, and implementation of Krasnoselskii's and Banach's fixed point theorem. At last, we discuss the Ulam-Hyers stability criteria for a nonlinear fractional Langevin equation. Some examples justifying the results gained are provided. The results are novel and provide extensions to some of the findings known in the literature.

    Citation: Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad. On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions[J]. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327

    Related Papers:

  • In this manuscript, we consider a class of nonlinear Langevin equations involving two different fractional orders in the frame of Caputo fractional derivative with respect to another monotonic function $ \vartheta $ with antiperiodic boundary conditions. The existence and uniqueness results are proved for the suggested problem. Our approach is relying on properties of $ \vartheta $-Caputo's derivative, and implementation of Krasnoselskii's and Banach's fixed point theorem. At last, we discuss the Ulam-Hyers stability criteria for a nonlinear fractional Langevin equation. Some examples justifying the results gained are provided. The results are novel and provide extensions to some of the findings known in the literature.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Sudies, Vol. 204, Amsterdam, Netherlands: Elsevier Science B.V., 2006.
    [2] I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999.
    [3] R. L. Magin, Fractional Calculus in Bioengineering, Danbury: Begell House Publishers, 2006.
    [4] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Liouville-Caputo Type, Berlin: Springer, 2010.
    [5] Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore: World Scientific, 2014.
    [6] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [7] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92.
    [8] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763. doi: 10.2298/TSCI160112019H
    [9] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006
    [10] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transforms, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 709–722.
    [11] J. V. C. Sousa, E. C. D. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simula., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005
    [12] A. Fernandez, M. A. Ozarslan, D, Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput., 354 (2019), 248–265. doi: 10.1016/j.amc.2019.02.045
    [13] P. Langevin, On the theory of Brownian motion, C. R. Acad. Sci., 146 (1908), 530–533
    [14] K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73 (2006), 061104. doi: 10.1103/PhysRevE.73.061104
    [15] K. S. Fa, Fractional Langevin equation and Riemann-Liouville fractional derivative, Eur. Phys. J. E, 24 (2007), 139–143. doi: 10.1140/epje/i2007-10224-2
    [16] R. F. Camargo, Ary O. Chiacchio, R. Charnet, E. Capelas de Oliveira, Solution of the fractional Langevin equation and the Mittag-Leffler functions, J. Math. Phys., 50 (2009), 063507. doi: 10.1063/1.3152608
    [17] S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. doi: 10.1016/j.physleta.2008.08.045
    [18] A. Chen, Y. Chen, Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions, Boundary Value Probl., 2011 (2011), 516481.
    [19] C. Torres, Existence of solution for fractional Langevin equation: Variational approach, Electron. J. Qualitative Theory Differ. Equations, 54 (2014), 1–14.
    [20] A. Berhail, N. Tabouche, M. M. Matar, J, Alzabut, Boundary value problem defined by system of generalized Sturm-Liouville and Langevin Hadamard fractional differential equations, Math. Methods Appl. Sci., 2020 (2020), 1–13. Available from: https://doi.org/10.1002/mma.6507.
    [21] W. T. Coffey, Yu. P. Kalmykov, J. T. Waldron, The Langevin equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, World Scientific Series in Contemporary Chemical Physics, 2 Eds., Vol. 14, N. J.: World Scientific Publishing Co., Inc., 2004.
    [22] B. Ahmad, Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equations, 2010 (2010), 649486.
    [23] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., 13 (2012), 599–606. doi: 10.1016/j.nonrwa.2011.07.052
    [24] A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Existence and stability analysis of solutions for fractional Langevin equation with nonlocal integral and anti-periodic type boundary conditions, Fractals, 28 (2020). Available from: https://doi.org/10.1142/S0218348X2040006X.
    [25] B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava, S. K. Ntouyas, The Langevin equation in terms of generalized Liouville–Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral, Mathematics, 7 (2019), 533. doi: 10.3390/math7060533
    [26] A. Seemab, J. Alzabut, Y. Adjabi, M. S. Abdo, Langevin equation with nonlocal boundary conditions involving a $\vartheta$–Caputo fractional operator, 2020. Available from: https://arXiv.org/abs/2006.00391.
    [27] A. Salem, M. Alnegga, Fractional Langevin equations with multi-point and non-local integral boundary conditions, Cogent Math. Stat., 7 (2020), 1758361. Available from: https://doi.org/10.1080/25742558.2020.1758361.
    [28] A. Alsaedi, B. Ahmad, M. Alghanmi, S. K. Ntouyas, On a generalized Langevin type nonlocal fractional integral multivalued problem, Mathematics, 7 (2019), 1015. doi: 10.3390/math7111015
    [29] A. Devi, A. Kumar, Existence of solutions for fractional Langevin equation involving generalized Caputo derivative with periodic boundary conditions, AIP Conf. Proc., 2214 (2020), 020026. doi: 10.1063/5.0003365
    [30] A. Salem, N. Mshary, On the existence and uniqueness of solution to fractional-order Langevin equation, Adv. Math. Phys., 2020 (2020).
    [31] H. A. Wahash, M. S. Abdo, A. M. Saeed, S. K. Panchal, Singular fractional differential equations with $\psi$-Caputo operator and modified Picard's iterative method, Appl. Math. E-Notes, 20 (2020), 215–229.
    [32] M. S. Abdo, S. T. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for $\psi$-Hilfer fractional integrodifferential equations, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1757–1780. doi: 10.1007/s11868-020-00355-x
    [33] K. D. Kucche, A. D. Mali, J. V. C. Sousa, On the nonlinear $\psi$-Hilfer fractional differential equations, Comput. Appl. Math., 38 (2019), 1–25. doi: 10.1007/s40314-019-0767-y
    [34] J. V. D. C. Sousa, E. Capelas de Oliveira, Existence, uniqueness, estimation and continuous dependence of the solutions of a nonlinear integral and an integrodifferential equations of fractional order, 2018. Available from: https://arXiv.org/abs/1806.01441.
    [35] J. V. D. C Sousa, E. C. de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\vartheta $ -Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), 96. doi: 10.1007/s11784-018-0587-5
    [36] M. S. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, J. Math. Anal. Model., 1 (2020), 33–46. doi: 10.48185/jmam.v1i1.2
    [37] H. A. Wahash, S. K. Panchal, Positive solutions for generalized two-term fractional differential equations with integral boundary conditions, J. Math. Anal. Model., 1 (2020), 47–63. doi: 10.48185/jmam.v1i1.35
    [38] M. S. Abdo, K. Shah, S. K. Panchal, H. A. Wahash, Existence and Ulam stability results of a coupled system for terminal value problems involving $\vartheta $-Hilfer fractional operator, Adv. Differ. Equations, 2020 (2020), 316. doi: 10.1186/s13662-020-02775-x
    [39] D. Luo, Z. Luo, H. Qiu, Existence and Hyers-Ulam stability of solutions for a mixed fractional-order nonlinear delay difference equation with parameters, Math. Probl. Eng., 2020 (2020), 9372406.
    [40] D. Luo, A. Zada, S. Shaleena, M. Ahmad, Analysis of a coupled system of fractional differential equations with non-separated boundary conditions, Adv. Differ. Equations, 2020 (2020), 590. doi: 10.1186/s13662-020-03045-6
    [41] D. Luo, Z. Luo, Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math. Slovaca, 70 (2020), 1231–1248. doi: 10.1515/ms-2017-0427
    [42] A. Boutiara, M. S. Abdo, M. Benbachir, Existence results for $ \vartheta$-Caputo fractional neutral functional integro-differential equations with finite delay, Turkish J. Math., 44 (2020), 2380–2401. doi: 10.3906/mat-2010-9
    [43] A. Boutiara, S. Etemad, A. Hussain, S. Rezapour, The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving $\varphi$-Caputo fractional operators, Adv. Differ. Equations, 2021 (2021), 95. doi: 10.1186/s13662-021-03253-8
    [44] R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci., 2018 (2018), 336–352.
    [45] A, Granas, J. Dugundji, Fixed Point Theory, Springer: New York, 2003.
    [46] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Usp. Mat. Nauk, 10 (1955), 123–127.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2314) PDF downloads(173) Cited by(15)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog