Research article

On a Langevin equation involving Caputo fractional proportional derivatives with respect to another function

  • Received: 23 August 2021 Accepted: 14 October 2021 Published: 22 October 2021
  • MSC : 26A33, 34A08, 58C30

  • In this work, we introduce and study a class of Langevin equation with nonlocal boundary conditions governed by a Caputo fractional order proportional derivatives of an unknown function with respect to another function. The qualitative results concerning the given problem are obtained with the aid of the lower regularized incomplete Gamma function and applying the standard fixed point theorems. In order to homologate the theoretical results we obtained, we present two examples.

    Citation: Zaid Laadjal, Fahd Jarad. On a Langevin equation involving Caputo fractional proportional derivatives with respect to another function[J]. AIMS Mathematics, 2022, 7(1): 1273-1292. doi: 10.3934/math.2022075

    Related Papers:

  • In this work, we introduce and study a class of Langevin equation with nonlocal boundary conditions governed by a Caputo fractional order proportional derivatives of an unknown function with respect to another function. The qualitative results concerning the given problem are obtained with the aid of the lower regularized incomplete Gamma function and applying the standard fixed point theorems. In order to homologate the theoretical results we obtained, we present two examples.



    加载中


    [1] R. Hilfer, Applications of fractional calculus in physics, Singapore: Word Scientific, 2000. doi: 10.1142/3779.
    [2] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 3413–3442. doi: 10.1155/S0161171203301486. doi: 10.1155/S0161171203301486
    [3] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier Science, 204 (2006).
    [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Yverdon: Gordon and Breach, 1993.
    [5] R. L. Magin, Fractional calculus in bioengineering, second edition, Begell House Publishers, 2020.
    [6] I. Podlubny, Fractional differential equations, San Diego, California: Academic Press, 1999.
    [7] A. Atangana, Mathematical model of survival of fractional calculus, critics and their impact: How singular is our world? Adv. Differ. Equ., 2021 (2021), 403. doi: 10.1186/s13662-021-03494-7. doi: 10.1186/s13662-021-03494-7
    [8] G. Yang, B. Shiri, H. Kong, G. C. Wu, Intermediate value problems for fractional differential equations, Comput. Appl. Math., 40 (2021), 195. doi: 10.1007/s40314-021-01590-8. doi: 10.1007/s40314-021-01590-8
    [9] B. Shiri, G. C. Wu, D. Baleanu, Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170 (2021), 162–178. doi: 10.1016/j.apnum.2021.06.015. doi: 10.1016/j.apnum.2021.06.015
    [10] C. Y. Gu, F. X. Zheng, B. Shiri, Mittag-Leffler stability analysis of tempered fractional neural networks with short memory and variable-order, Fractals, 29 (2021), 2140029. doi: 10.1142/S0218348X21400296. doi: 10.1142/S0218348X21400296
    [11] B. Shiri, G. C. Wu, D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math., 156 (2020), 385–395. doi: 10.1016/j.apnum.2020.05.007. doi: 10.1016/j.apnum.2020.05.007
    [12] M. K. Sadabad, A. J. Akbarfam, B. Shiri, A numerical study of eigenvalues and eigenfunctions of fractional Sturm-Liouville problems via Laplace transform, Indian J. Pure Appl. Math., 51 (2020), 857–868. doi: 10.1007/s13226-020-0436-2. doi: 10.1007/s13226-020-0436-2
    [13] T. Jin, S. C. Gao, H. X. Xia, H. Ding, Reliability analysis for the fractional-order circuit system subject to the uncertain random fractional-order model with Caputo type, J. Adv. Res., 32 (2021), 15–26. doi: 10.1016/j.jare.2021.04.008. doi: 10.1016/j.jare.2021.04.008
    [14] T. Jin, X. F. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simulat., 190 (2021), 203–221. doi: 10.1016/j.matcom.2021.05.018. doi: 10.1016/j.matcom.2021.05.018
    [15] T. Jin, X. F. Yang, H. X. Xia, H. Ding, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differental equation with Caputo type, Fractals, 29 (2021), 2150012. doi: 10.1142/S0218348X21500122. doi: 10.1142/S0218348X21500122
    [16] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002. doi: 10.1016/j.cam.2014.01.002
    [17] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016. doi: 10.1016/j.cam.2014.10.016
    [18] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137. doi: 10.13140/RG.2.1.1744.9444. doi: 10.13140/RG.2.1.1744.9444
    [19] D. R. Anderson, P. Eloe, Second-order self-adjoint differential equations using a proportional derivative controller, Commun. Appl. Nonlinear Anal., 24 (2017), 17–48.
    [20] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7. doi: 10.1140/epjst/e2018-00021-7
    [21] F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. doi: 10.1515/math-2020-0014. doi: 10.1515/math-2020-0014
    [22] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 303. doi: 10.1186/s13662-020-02767-x. doi: 10.1186/s13662-020-02767-x
    [23] P. Langevin, On the theory of Brownian motion, C. R. Acad. Sci. Paris, 146 (1908), 530–533.
    [24] W. T. Coffey, Y. P. Kalmykov, J. Waldron, The Langevin equation with applications to stochastic problems in physics, chemistry and electrical engineering, River Edge, NJ, USA: World Scientific, 2004. doi: 10.1142/5343.
    [25] R. Klages, G. Radons, I. M. Sokolov, Anomalous transport: foundations and applications, Weinheim, Wiley-VCH, 2008. doi: 10.1002/9783527622979.
    [26] S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. doi: 10.1016/j.physleta.2008.08.045. doi: 10.1016/j.physleta.2008.08.045
    [27] M. Uranagase, T. Munakata, Generalized Langevin equation revisited: mechanical random force and self-consistent structure, J. Phys. A Math. Theor., 43 (2010), 455003. doi: 10.1088/1751-8113/43/45/455003. doi: 10.1088/1751-8113/43/45/455003
    [28] A. Lozinski, R. G. Owens, T. N. Phillips, The langevin and fokker-planck equations in polymer rheology, Handb. Numer. Anal., 16 (2011), 211–303. doi: 10.1016/B978-0-444-53047-9.00002-2. doi: 10.1016/B978-0-444-53047-9.00002-2
    [29] Z. Laadjal, B. Ahmed, N. Adjeroud, Existence and uniqueness of solutions for multi-term fractional Langevin equation with boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 27 (2020), 339–350.
    [30] Z. Laadjal, T. Abdeljawad, F. Jarad, On existence-uniqueness results for proportional fractional differential equations and incomplete gamma functions, Adv. Differ. Equ., 2020 (2020), 641. doi: 10.1186/s13662-020-03043-8. doi: 10.1186/s13662-020-03043-8
    [31] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062. doi: 10.1016/j.amc.2011.03.062
    [32] U. N. Katugampola, A new approach to generalized fractional derivatives, 2014, arXiv: 1106.0965v4.
    [33] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142. doi: 10.1186/1687-1847-2012-142
    [34] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, New York, Toronto, London: McGraw-Hill, 1953.
    [35] A. Gil, J. Segura, N. M. Temme, Efficient and accurate algorithms for the computation and inversion of the incomplete gamma function ratios, SIAM J. Sci. Comput., 34 (2012), A2965–A2981. doi: 10.1137/120872553. doi: 10.1137/120872553
    [36] A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. doi: 10.1007/978-0-387-21593-8.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2283) PDF downloads(113) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog