Research article

Toeplitz operators between large Fock spaces in several complex variables

  • Received: 23 July 2021 Accepted: 13 October 2021 Published: 22 October 2021
  • MSC : 32A25, 47B35

  • Let $ \omega $ belong to the weight class $ \mathcal{W} $, the large Fock space $ \mathcal{F}_{\omega}^{p} $ consists of all holomorphic functions $ f $ on $ \mathbb{C}^{n} $ such that the function $ f(\cdot)\omega(\cdot)^{1/2} $ is in $ L^p(\mathbb{C}^{n}, dv) $. In this paper, given a positive Borel measure $ \mu $ on $ {\mathbb C}^n $, we characterize the boundedness and compactness of Toeplitz operator $ T_\mu $ between two large Fock spaces $ F^{p}_\omega $ and $ F^{q}_\omega $ for all possible $ 0 < p, q < \infty $.

    Citation: Ermin Wang, Jiajia Xu. Toeplitz operators between large Fock spaces in several complex variables[J]. AIMS Mathematics, 2022, 7(1): 1293-1306. doi: 10.3934/math.2022076

    Related Papers:

  • Let $ \omega $ belong to the weight class $ \mathcal{W} $, the large Fock space $ \mathcal{F}_{\omega}^{p} $ consists of all holomorphic functions $ f $ on $ \mathbb{C}^{n} $ such that the function $ f(\cdot)\omega(\cdot)^{1/2} $ is in $ L^p(\mathbb{C}^{n}, dv) $. In this paper, given a positive Borel measure $ \mu $ on $ {\mathbb C}^n $, we characterize the boundedness and compactness of Toeplitz operator $ T_\mu $ between two large Fock spaces $ F^{p}_\omega $ and $ F^{q}_\omega $ for all possible $ 0 < p, q < \infty $.



    加载中


    [1] H. Arroussi, C. Z. Tong, Weighted composition operators between large Fock spaces in several complex variables, J. Funct. Anal., 277 (2019), 3436–3466. doi: 10.1016/j.jfa.2019.04.008. doi: 10.1016/j.jfa.2019.04.008
    [2] C. A. Berger, L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc., 301 (1987), 813–829. doi: 10.2307/2000671. doi: 10.2307/2000671
    [3] W. Bauer, L. A. Coburn, J. Isralowitz, Heat flow, BMO, and the compactness of Toeplitz operators, J. Funct. Anal., 259 (2010), 57–78. doi: 10.1016/j.jfa.2010.03.016. doi: 10.1016/j.jfa.2010.03.016
    [4] W. Bauer, J. Isralowitz, Compactness characterization of operators in the Toeplitz algebra of the Fock space $F^p_{\alpha}$, J. Funct. Anal., 263 (2012), 1323–1355. doi: 10.1016/j.jfa.2012.04.020. doi: 10.1016/j.jfa.2012.04.020
    [5] L. A. Coburn, J. Isralowitz, B. Li, Toeplitz operators with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc., 363 (2011), 3015–3030. doi: 10.1090/S0002-9947-2011-05278-5. doi: 10.1090/S0002-9947-2011-05278-5
    [6] G. M. Dall'Ara, Pointwise eatimates of weighted Bergman kernels in several complex variables, Adv. Math., 285 (2015), 1706–1740. doi: 10.1016/j.aim.2015.06.024. doi: 10.1016/j.aim.2015.06.024
    [7] Z. J. Hu, X. F. Lv, Toeplitz operators from one Fock space to another, Integr. Equat. Oper. Th., 70 (2011), 541–559. doi: 10.1007/s00020-011-1887-y. doi: 10.1007/s00020-011-1887-y
    [8] Z. J. Hu, X. F. Lv, Toeplitz operators on Fock spaces $F^{p}(\varphi)$, Integr. Equat. Oper. Th., 80 (2014), 33–59. doi: 10.1007/s00020-014-2168-3. doi: 10.1007/s00020-014-2168-3
    [9] Z. J. Hu, X. F. Lv, Positive Toeplitz operators between different doubling Fock spaces, Taiwan. J. Math., 21 (2017), 467–487. doi: 10.11650/tjm/7031. doi: 10.11650/tjm/7031
    [10] Z. J. Hu, E. M. Wang, Hankel operators between Fock spaces, Integr. Equat. Oper. Th., 90 (2018), 1–20. doi: 10.1007/s00020-018-2459-1. doi: 10.1007/s00020-018-2459-1
    [11] J. Isralowitz, K. H. Zhu, Toeplitz operators on the Fock space, Integr. Equat. Oper. Th., 66 (2010), 593–611. doi: 10.1007/s00020-010-1768-9. doi: 10.1007/s00020-010-1768-9
    [12] J. Lu, X. F. Lv, Toeplitz operators between Fock spaces, B. Aust. Math. Soc., 92 (2015), 316–324. doi: 10.1017/S0004972715000477. doi: 10.1017/S0004972715000477
    [13] D. H. Luecking, Embedding theorems for spaces of analytic functions via Khinchine's inequality, Mich. Math. J., 40 (1993), 333–358. doi: 10.1307/mmj/1029004756. doi: 10.1307/mmj/1029004756
    [14] X. F. Lv, Bergman projections on weighted Fock spaces in several complex variables, J. Inequal. Appl., 2017 (2017), 1–10. doi: 10.1186/s13660-017-1560-3. doi: 10.1186/s13660-017-1560-3
    [15] R. Oliver, D. Pascuas, Toeplitz operators on doubling Fock spaces, J. Math. Anal. Appl., 435 (2016), 1426–1457. doi: 10.1016/j.jmaa.2015.11.023. doi: 10.1016/j.jmaa.2015.11.023
    [16] A. P. Schuster, D. Varolin, Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces, Integr. Equat. Oper. Th., 72 (2012), 363–392. doi: 10.1007/s00020-011-1939-3. doi: 10.1007/s00020-011-1939-3
    [17] E. M. Wang, Toeplitz operators with BMO and IMO symbols between Fock spaces, Arch. Math., 114 (2020), 541–551. doi: 10.1007/s00013-020-01445-4. doi: 10.1007/s00013-020-01445-4
    [18] K. H. Zhu, Analysis on Fock spaces, New York: Springer, 2012. doi: 10.1007/978-1-4419-8801-0.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2006) PDF downloads(91) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog