Fractional Langevin equations play an important role in describing a wide range of physical processes. For instance, they have been used to describe single-file predominance and the behavior of unshackled particles propelled by internal sounds. This article investigates fractional Langevin equations incorporating recent extensive fractional operators of different orders. Nonperiodic and nonlocal integral boundary conditions are assumed for the model. The Hyres-Ulam stability, existence, and uniqueness of the solution are defined and analyzed for the suggested equations. Also, we utilize Banach contraction principle and Krasnoselskii fixed point theorem to accomplish our results. Moreover, it will be apparent that the findings of this study include various previously obtained results as exceptional cases.
Citation: Mohamed A. Barakat, Abd-Allah Hyder, Doaa Rizk. New fractional results for Langevin equations through extensive fractional operators[J]. AIMS Mathematics, 2023, 8(3): 6119-6135. doi: 10.3934/math.2023309
Fractional Langevin equations play an important role in describing a wide range of physical processes. For instance, they have been used to describe single-file predominance and the behavior of unshackled particles propelled by internal sounds. This article investigates fractional Langevin equations incorporating recent extensive fractional operators of different orders. Nonperiodic and nonlocal integral boundary conditions are assumed for the model. The Hyres-Ulam stability, existence, and uniqueness of the solution are defined and analyzed for the suggested equations. Also, we utilize Banach contraction principle and Krasnoselskii fixed point theorem to accomplish our results. Moreover, it will be apparent that the findings of this study include various previously obtained results as exceptional cases.
[1] | D. Ingman, J. Suzdalnitsky, Application of differential operator with servo-order function in model of viscoelastic deformation process, J. Eng. Mech., 131 (2005), 763–767. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:7(763) doi: 10.1061/(ASCE)0733-9399(2005)131:7(763) |
[2] | S. Z. Rida, A. M. A. El-Sayed, A. A. M. Arafa, Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model, J. Stat. Phys., 140 (2010), 797–811. https://doi.org/10.1007/s10955-010-0007-8 doi: 10.1007/s10955-010-0007-8 |
[3] | H. Sun, W. Chen, Y. Chen, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A, 388 (2009), 4586–4592. https://doi.org/10.1016/j.physa.2009.07.024 doi: 10.1016/j.physa.2009.07.024 |
[4] | A. W. Lo, Long-term memory in stock market prices, Econometrica, 59 (1991), 1279–1313. https://doi.org/10.2307/2938368 doi: 10.2307/2938368 |
[5] | G. Z. Voyiadjis, W. Sumelka, Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative, J. Mech. Behav. Biomed. Mater., 89 (2019), 209–216. https://doi.org/10.1016/j.jmbbm.2018.09.029 doi: 10.1016/j.jmbbm.2018.09.029 |
[6] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: theoretical developments and applications in physics and engineering, Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
[7] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, Singapore World Scientific, 2010. https://doi.org/10.1142/p926 |
[8] | P. Langevin, Sur la théorie du mouvement brownien, Am. J. Phys., 146 (1908), 530–533. |
[9] | A. Hyder, M. A. Barakat, A. H. Soliman, A. A. Almoneef, C. Cesarano, New analytical solutions for coupled stochastic Korteweg de Vries equations via generalized derivatives, Symmetry, 14 (2022), 1770. https://doi.org/10.3390/sym14091770 doi: 10.3390/sym14091770 |
[10] | S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Solitons Fract., 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256 doi: 10.1016/j.chaos.2020.110256 |
[11] | K. Shah, M. Arfan, A. Ullah, Q. Al-Mdallal, K. J. Ansari, T. Abdeljawad, Computational study on the dynamics of fractional order differential equations with applications, Chaos Solitons Fract., 157 (2022), 111955. https://doi.org/10.1016/j.chaos.2022.111955 doi: 10.1016/j.chaos.2022.111955 |
[12] | T. Abdeljawad, R. Amin, K. Shah, Q. Al-Mdallal, F. Jarad, Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method, Alexandria Eng. J., 59 (2020), 2391–2400. https://doi.org/10.1016/j.aej.2020.02.035 doi: 10.1016/j.aej.2020.02.035 |
[13] | B. Ahmad, J. J. Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equations, 2010 (2010), 649486. https://doi.org/10.1155/2010/649486 doi: 10.1155/2010/649486 |
[14] | B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal., 13 (2012), 599–606. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052 |
[15] | T. Yu, K. Deng, M. Luo, Existence and uniqueness of solutions of initial value problems for nonlinear langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1661–1668. https://doi.org/10.1016/j.cnsns.2013.09.035 doi: 10.1016/j.cnsns.2013.09.035 |
[16] | O. Baghani, On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 675–681. https://doi.org/10.1016/j.cnsns.2016.05.023 doi: 10.1016/j.cnsns.2016.05.023 |
[17] | C. Torres, Existence of solution for fractional Langevin equation: variational approach, Electron. J. Qual. Theory Differ. Equations, 2014 (2014), 1–14. https://doi.org/10.14232/ejqtde.2014.1.54 doi: 10.14232/ejqtde.2014.1.54 |
[18] | M. A. Barakat, A. H. Soliman, A. A. Hyder, Langevin equations with generalized proportional Hadamard–Caputo fractional derivative, Comput. Intell. Neurosci., 2021, (2021) 6316477. https://doi.org/10.1155/2021/6316477 doi: 10.1155/2021/6316477 |
[19] | V. Kobelev, E. Romanov, Fractional Langevin equation to describe anomalous diffusion, Prog. Theor. Phys. Suppl., 139 (2000), 470–476. https://doi.org/10.1143/PTPS.139.470 doi: 10.1143/PTPS.139.470 |
[20] | S. C. Lim, S. V. Muniandy, Self-similar Gaussian processes for modeling anomalous diffusion, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 66 (2002), 021114. https://doi.org/10.1103/PhysRevE.66.021114 doi: 10.1103/PhysRevE.66.021114 |
[21] | A. Hyder, M. A. Barakat, Novel improved fractional operators and their scientific applications, Adv. Differ. Equations, 2021 (2021), 389. https://doi.org/10.1186/s13662-021-03547-x doi: 10.1186/s13662-021-03547-x |
[22] | Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equations, 2014 (2014), 10. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10 |
[23] | C. H. Eab, S. C. Lim, Fractional generalized Langevin equation approach to single-file diffusion, Phys. A, 389 (2010), 2510–2521. https://doi.org/10.1016/j.physa.2010.02.041 doi: 10.1016/j.physa.2010.02.041 |
[24] | T. Sandev, Ž. Tomovski, Langevin equation for a free particle driven by power law type of noises, Phys. Lett. A, 378 (2014), 1–9. https://doi.org/10.1016/j.physleta.2013.10.038 doi: 10.1016/j.physleta.2013.10.038 |
[25] | R. Rizwan, A. Zada, Existence theory and Ulam's stabilities of fractional Langevin equation, Qual. Theory Dyn. Syst., 20 (2021), 57. https://doi.org/10.1007/s12346-021-00495-5 doi: 10.1007/s12346-021-00495-5 |
[26] | J. Tariboon, S. K. Ntouyas, C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys., 2014 (2014), 372749. https://doi.org/10.1155/2014/372749 doi: 10.1155/2014/372749 |