Research article Special Issues

Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations

  • Received: 13 July 2022 Revised: 08 August 2022 Accepted: 18 August 2022 Published: 23 August 2022
  • MSC : 34A08, 47H08, 34A38

  • The goal of this manuscript is to study the existence theory of solution for a nonlinear boundary value problem of tripled system of fractional order hybrid sequential integro-differential equations. The analysis depends on some results from fractional calculus and fixed point theory. As a result, we generalized Darbo's fixed point theorem to form an updated version of tripled fixed point theorem to investigate the proposed system. Also, Hyres-Ulam and generalized Hyres-Ulam stabilities results are established for the considered system. For the illustration of our main results, we provide an example.

    Citation: Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad. Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations[J]. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029

    Related Papers:

  • The goal of this manuscript is to study the existence theory of solution for a nonlinear boundary value problem of tripled system of fractional order hybrid sequential integro-differential equations. The analysis depends on some results from fractional calculus and fixed point theory. As a result, we generalized Darbo's fixed point theorem to form an updated version of tripled fixed point theorem to investigate the proposed system. Also, Hyres-Ulam and generalized Hyres-Ulam stabilities results are established for the considered system. For the illustration of our main results, we provide an example.



    加载中


    [1] J. Banaś, On measures of noncompactness in Banach spaces, Comment. Math. Univ. Ca., 21 (1980), 131–143.
    [2] J. Banaś, M. Jleli, M. Mursaleen, B. Samet, C. Vetro, Advances in nonlinear analysis via the concept of measure of noncompactness, Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-3722-1
    [3] C. Corduneanu, Integral equations and applications, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511569395
    [4] M. Jamil, R. A. Khan, K. Shah, Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations, Bound. Value Probl., 2019 (2019), 77. https://doi.org/10.1186/s13661-019-1190-4 doi: 10.1186/s13661-019-1190-4
    [5] H. Alrabaiah, M. Jamil, K. Shah, R. A. Khan, Existence theory and semi-analytical study of non-linear Volterra fractional integro-differential equations, Alex. Eng. J., 59 (2020), 4677–4686. https://doi.org/10.1016/j.aej.2020.08.025 doi: 10.1016/j.aej.2020.08.025
    [6] A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo's theorem with application to the solvability of system of integral equations, J. Comput. Appl. Math., 260 (2014), 68–77. https://doi.org/10.1016/j.cam.2013.09.039 doi: 10.1016/j.cam.2013.09.039
    [7] A. Aghajani, A. S. Haghighi, Existence of solutions for a system of integral equations via measure of noncompactness, Novi Sad J. Math., 44 (2014), 59–73.
    [8] S. Banaei, M. Mursaleen, V. Parvaneh, Some fixed point theorems via measure of noncompactness with applications to differential equations, Comput. Appl. Math., 39 (2020), 139. https://doi.org/10.1007/s40314-020-01164-0 doi: 10.1007/s40314-020-01164-0
    [9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, North-Holland Mathematics studies, Elsevier, 2006.
    [10] R. A. Khan, K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19 (2015), 515–526.
    [11] M. ur Rehman, R. A. Khan, A note on boundary value problems for a coupled system of fractional differential equations, Comput. Math. Appl., 61 (2011), 2630–2637. https://doi.org/10.1016/j.camwa.2011.03.009 doi: 10.1016/j.camwa.2011.03.009
    [12] M. Benchohra, N. Hamidi, J. Henderson, Fractional differential equations with anti-periodic boundary conditions, Numer. Func. Anal. Optim., 34 (2013), 404–414. https://doi.org/10.1080/01630563.2012.763140 doi: 10.1080/01630563.2012.763140
    [13] H. Khan, T. Abdeljawad, M. Aslam, R. A. Khan, A. Khan, Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation, Adv. Differ. Equ., 2019 (2019), 104. https://doi.org/10.1186/s13662-019-2054-z doi: 10.1186/s13662-019-2054-z
    [14] A. Deep, Deepmala, J. R. Roshan, K. S. Nisar, T. Abdeljawad, An extension of Darbo's fixed point theorem for a class of system of nonlinear integral equations, Adv. Differ. Equ., 2020 (2020), 483. https://doi.org/10.1186/s13662-020-02936-y doi: 10.1186/s13662-020-02936-y
    [15] V. Karakaya, N. E. H. Bouzara, K. DoLan, Y. Atalan, Existence of tripled fixed points for a class of condensing operators in Banach spaces, Sci. World J., 2014 (2014), 541862. https://doi.org/10.1155/2014/541862 doi: 10.1155/2014/541862
    [16] L. Baeza, H. Ouyang, A railway track dynamics model based on modal sub-structuring and a cyclic boundary condition, J. Sound Vib., 330 (2011), 75–86. https://doi.org/10.1016/j.jsv.2010.07.023 doi: 10.1016/j.jsv.2010.07.023
    [17] E. Okyere, J. A. Prah, F. T. Oduro, A Caputo based SIRS and SIS fractional order models with standard incidence rate and varying population, Commun. Math. Biol. Neu., 2020 (2020), 1–25. https://doi.org/10.28919/cmbn/4850 doi: 10.28919/cmbn/4850
    [18] K. B. Oldham, J. Spanier, The fractional calculus, London: Academic Press, 1974.
    [19] I. Podlubny, Fractional differential equation, 1Ed., New York: Academic Press, 1998.
    [20] B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal.: Hybrid Syst., 4 (2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005 doi: 10.1016/j.nahs.2009.10.005
    [21] V. Lakshmikantham, S. Leela, Differential and integral inequalities, Theory and applications: Ordinary differential equations, Vol. 55, New York: Academic Press, 1969.
    [22] A. Khan, Z. A. Khan, T. Abdeljawad, H. Khan, Analytical analysis of fractional-order sequential hybrid system with numerical application, Adv. Cont. Discr. Mod., 2022 (2022), 12. https://doi.org/10.1186/s13662-022-03685-w doi: 10.1186/s13662-022-03685-w
    [23] S. Aljoudi, B. Ahmad, J. J. Nieto, A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fract., 91 (2016), 39–46. https://doi.org/10.1016/j.chaos.2016.05.005 doi: 10.1016/j.chaos.2016.05.005
    [24] B. Ahmad, S. Ntouyas, Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral functional differential equations, Electron. J. Differ. Equ., 36 (2017), 1–11.
    [25] G. Nazir, K. Shah, T. Abdeljawad, H. Khalil, R. A. Khan, Using a prior estimate method to investigate sequential hybrid fractional differential equations, Fractals, 28 (2020), 2040004. https://doi.org/10.1142/S0218348X20400046 doi: 10.1142/S0218348X20400046
    [26] N. Li, H. Gu, Y. Chen, BVP for Hadamard sequential fractional hybrid differential inclusions, J. Funct. Spaces, 2022 (2022), 4042483. https://doi.org/10.1155/2022/4042483 doi: 10.1155/2022/4042483
    [27] J. Banás, K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., 1980.
    [28] R. R. Akmerov, M. I. Kamenski, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of noncompactness and condensing operators, Operator theory: Advances and applications, Birkhäuser Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7
    [29] D. H. Hyers, On the stability of linear functional equation, Proc. N. A. S., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [30] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126–137. https://doi.org/10.1006/jmaa.1998.5916 doi: 10.1006/jmaa.1998.5916
    [31] P. Kumam, A. Ali, K. Shah, R. A. Khan, Existence results and Hyers-Ulam stability to a class of nonlinear arbitrary order differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2986–2997. https://doi.org/10.22436/JNSA.010.06.13 doi: 10.22436/JNSA.010.06.13
    [32] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Elec. J. Qual. Theory Differ. Equ., 63 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.63 doi: 10.14232/ejqtde.2011.1.63
    [33] F. Haq, K. Shah, G. Rahman, M. Shahzad, Hyers-Ulam stability to a class of fractional differential equations with boundary conditions, Int. J. Appl. Comput. Math., 3 (2017), 1135–1147. https://doi.org/10.1007/s40819-017-0406-5 doi: 10.1007/s40819-017-0406-5
    [34] I. Ahmad, K. Shah, G. ur Rahman, D. Baleanu, Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations, Math. Methods Appl. Sci., 43 (2020), 8669–8682. https://doi.org/10.1002/mma.6526 doi: 10.1002/mma.6526
    [35] H. Khan, Y. Li, W. Chen, D. Baleanu, A. Khan, Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, Bound. Value Probl., 2017 (2017), 157. https://doi.org/10.1186/s13661-017-0878-6 doi: 10.1186/s13661-017-0878-6
    [36] M. Ahmad, A. Zada, J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type, Demonstr. Math., 52 (2019), 283–295. https://doi.org/10.1515/dema-2019-0024 doi: 10.1515/dema-2019-0024
    [37] J. Wang, K. Shah, A. Ali, Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations, Math. Methods Appl. Sci., 41 (2018), 2392–2402. https://doi.org/10.1002/mma.4748 doi: 10.1002/mma.4748
    [38] Samina, K. Shah, R. A. Khan, Stability theory to a coupled system of nonlinear fractional hybrid differential equations, Indian J. Pure Appl. Math., 51 (2020), 669–687. https://doi.org/10.1007/s13226-020-0423-7 doi: 10.1007/s13226-020-0423-7
    [39] C. Urs, Coupled fixed point theorem and applications to periodic boundary value problem, Miskolc. Math. Notes, 14 (2013), 323–333. https://doi.org/10.18514/MMN.2013.598 doi: 10.18514/MMN.2013.598
    [40] E. V. Kirichenko, P. Garbaczewski, V. Stephanovich, M. Zaba, Lévy flights in an infinite potential well as a hypersingular Fredholm problem, Phys. Rev. E, 93 (2016), 052110. https://doi.org/10.1103/PhysRevE.93.052110 doi: 10.1103/PhysRevE.93.052110
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1180) PDF downloads(83) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog