Research article

h-Almost Ricci solitons with concurrent potential fields

  • Received: 07 December 2019 Accepted: 26 March 2020 Published: 05 May 2020
  • MSC : 53B21, 53B20, 53C44

  • In this paper, we will focus our attention on the structure of h-almost Ricci solitons. A complete classification of h-almost Ricci solitons with concurrent potential vector fields is given. Also, we obtain conditions on a submanifold of a Riemannian h-almost Ricci soliton to be an h-almost Ricci soliton. Finally, we classify h-almost Ricci soliton on Euclidean hypersurface with λ = h.

    Citation: Hamed Faraji, Shahroud Azami, Ghodratallah Fasihi-Ramandi. h-Almost Ricci solitons with concurrent potential fields[J]. AIMS Mathematics, 2020, 5(5): 4220-4228. doi: 10.3934/math.2020269

    Related Papers:

  • In this paper, we will focus our attention on the structure of h-almost Ricci solitons. A complete classification of h-almost Ricci solitons with concurrent potential vector fields is given. Also, we obtain conditions on a submanifold of a Riemannian h-almost Ricci soliton to be an h-almost Ricci soliton. Finally, we classify h-almost Ricci soliton on Euclidean hypersurface with λ = h.


    加载中


    [1] H. D. Cao, Recent progress on Ricci soliton, Adv. Lect. Math., 11 (2009), 1-38.
    [2] B. Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific, Hackensack, NJ, 2011.
    [3] B. Y. Chen, S. Deshmukh, Ricci solitons and concurrent vector field, Balkan J. Geom. Its Appl., 20 (2015), 14-25.
    [4] B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, World Scientific, Hackensack, NJ, 2017.
    [5] H. Ghahremani-Gol, Some results on h-almost Ricci solitons, J. Geom. Phys., 137 (2019), 212-216.
    [6] J. N. Gomes, Q. Wang and C. Xia, On the h-almost Ricci soliton, J. Geom. Phys., 114 (2017), 216-222. doi: 10.1016/j.geomphys.2016.12.010
    [7] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255-306. doi: 10.4310/jdg/1214436922
    [8] R. S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71 (1988), 237-261.
    [9] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer, 1997.
    [10] S. Pigola, M. Rigoli, M. Rimoldi, et al. Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 757-799.
    [11] R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geometriae Dedicata, 48 (1993), 15-25. doi: 10.1007/BF01265674
    [12] S. Sasaki, On the structure of Riemannian spaces whose group of holonomy fix a point or a direction, Nippon Sugaku Butsuri Gakkaishi, 16 (1942), 193-200.
    [13] S.-I. Tachibana, On Finsler spaces which admit a concurrent vector field, Tensor (N.S.), 1 (1950), 1-5.
    [14] K. Yano, On the torse-forming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20 (1994), 340-345.
    [15] K. Yano and B. Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep., 23 (1971), 343-350. doi: 10.2996/kmj/1138846372
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3561) PDF downloads(422) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog