We obtain some results on almost Einstein solitons with unit geodesic potential vector field and provide necessary and sufficient conditions for the soliton to be trivial.
Citation: Adara M. Blaga, Sharief Deshmukh. Einstein solitons with unit geodesic potential vector field[J]. AIMS Mathematics, 2021, 6(8): 7961-7970. doi: 10.3934/math.2021462
We obtain some results on almost Einstein solitons with unit geodesic potential vector field and provide necessary and sufficient conditions for the soliton to be trivial.
[1] | G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. Theor., 132 (2016), 66–94. doi: 10.1016/j.na.2015.10.021 |
[2] | G. Catino, L. Mazzieri, S. Mongodi, Rigidity of gradient Einstein shrinkers, Commun. Contemp. Math., 17 (2015), 1550046. doi: 10.1142/S0219199715500467 |
[3] | S. K. Chaubey, Characterization of perfect fluid spacetimes admitting gradient $\eta$-Ricci and gradient Einstein solitons, J. Geom. Phys., 162 (2021), 104069. doi: 10.1016/j.geomphys.2020.104069 |
[4] | G. Huang, Integral pinched gradient shrinking $\rho$-Einstein solitons, J. Math. Anal. Appl., 451 (2017), 1045–1055. doi: 10.1016/j.jmaa.2017.02.051 |
[5] | C. K. Mondal, A. A. Shaikh, Some results in $\eta$-Ricci soliton and gradient $\rho$-Einstein soliton in a complete Riemannian manifold, Commun. Korean Math. Soc., 34 (2019), 1279–1287. |
[6] | X. Yi, A. Zhu, The curvature estimate of gradient $\rho$-Einstein soliton, J. Geom. Phys., 162 (2021), 104063. doi: 10.1016/j.geomphys.2020.104063 |
[7] | L. F. Wang, On gradient quasi-Einstein solitons, J. Geom. Phys., 123 (2018), 484–494. doi: 10.1016/j.geomphys.2017.09.002 |
[8] | S. Deshmukh, H. Alsodais, N. Bin Turki, Some Results on Ricci Almost Solitons, Symmetry, 13 (2021), 430. doi: 10.3390/sym13030430 |
[9] | S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti, Ricci almost solitons, Ann. Scuola. Norm. Sci., 10 (2011), 757–799. |
[10] | B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, 2006. |
[11] | K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., New York, USA, 1970. |
[12] | M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. |
[13] | P. Petersen, Riemannian geometry, Springer, 1997. |