Citation: H. Thameem Basha, R. Sivaraj, A. Subramanyam Reddy, Ali J. Chamkha, H. M. Baskonus. A numerical study of the ferromagnetic flow of Carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole[J]. AIMS Mathematics, 2020, 5(5): 4197-4219. doi: 10.3934/math.2020268
[1] | R. Sivaraj, B. R. Kumar, Unsteady MHD dusty viscoelastic fluid Couette flow in an irregular channel with varying mass diffusion, Int. J. Heat Mass Tran., 55 (2012), 3076-3089. doi: 10.1016/j.ijheatmasstransfer.2012.01.049 |
[2] | B. R. Kumar, R. Sivaraj, Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity, Int. J. Heat Mass Tran., 56 (2013), 370-379. doi: 10.1016/j.ijheatmasstransfer.2012.09.001 |
[3] | B. R. Kumar, R. Sivaraj, MHD viscoelastic fluid non-Darcy flow over a vertical cone and a flat plate, Int. Commun. Heat Mass Tran., 40 (2013), 1-6. doi: 10.1016/j.icheatmasstransfer.2012.10.025 |
[4] | A. J. Benazir, R. Sivaraj, M. M. Rashidi, Comparison between Casson fluid flow in the presence of heat and mass transfer from a vertical cone and flat plate, J. Heat Trans., 138 (2016), 1-6. |
[5] | Z. Li, A. Shafee, M. Ramzan, et al. Simulation of natural convection of Fe3O4-water ferrofluid in a circular porous cavity in the presence of a magnetic field, Eur. Phys. J. Plus, 134 (2019), 77. |
[6] | P. Besthapu, R. Ul Haq, S. Bandari, et al. Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface, Neural Comput. Appl., 31 (2019), 207-217. doi: 10.1007/s00521-017-2992-x |
[7] | F. A. Soomro, R. Ul Haq, Q. M. Al-Mdallal, et al. Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface, Results Phys., 8 (2018), 404-414. doi: 10.1016/j.rinp.2017.12.037 |
[8] | K. Ur Rehman, I. Shahzadi, M. Y. Malik, et al. On heat transfer in the presence of nano-sized particles suspended in a magnetized rotatory flow field, Case Stud. Therm. Eng., 14 (2019), 1-10. |
[9] | P. Ragupathi, A. K. A. Hakeem, Q. M. Al-Mdallal, et al. Non-uniform heat source/sink effects on the three-dimensional flow of Fe3O4/Al2O3 nanoparticles with different base fluids past a Riga plate, Case Stud. Therm. Eng., 15 (2019), 1-9. |
[10] | S. Saranya, P. Ragupathi, B.Ganga, et al. Non-linear radiation effects on magnetic/non-magnetic nanoparticles with different base fluids over a flat plate, Adv. Powder Technol., 29 (2018), 1977-1990. doi: 10.1016/j.apt.2018.05.002 |
[11] | S. Aman, Q. Al-Mdallal, Flow of ferrofluids under second order slip effect, AIP Conference Proceedings, 2116 (2019), 030012. |
[12] | S. S. Papell, Low viscosity magnetic fluid obtained by colloidal suspension of magnetic particles, U. S. Patent, 215 (1965), 572. |
[13] | K. Raj, R. Moskowitz, Commercial applications of ferrofluids, J. Magn. Magn. Mater., 85 (1990), 233-245. doi: 10.1016/0304-8853(90)90058-X |
[14] | D. B. Hathaway, Use of ferrofluid in moving coil loudspeakers, dB-sound Eng. Mag., 13 (1979), 42-44. |
[15] | M. I. I. Shliomis, Comment on "Ferrofluids as Thermal Ratchets", Phys. Rev. Lett., 92 (2004) 188902. |
[16] | J. C. Misra, G. C. Shit, Flow of a biomagnetic visco-elastic fluid in a channel with stretching walls, J. Appl. Mech., 76 (2015), 1-9. |
[17] | A. Majeed, A. Zeeshan, R. Ellahi, Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux, J. Mol. Liq., 223 (2016), 528-533. doi: 10.1016/j.molliq.2016.07.145 |
[18] | N. Muhammad, S. Nadeem, Ferrite nanoparticles Ni-ZnFe2O4, Mn-ZnFe2O4 and Fe2O4 in the flow of ferromagnetic nanofluid, Eur. Phys. J. Plus, 132 (2017), 377. |
[19] | P. J. Carreau, An analysis of the viscous behavior of polymer solutions, Can. J. Chem. Eng., 57 (1979), 135-140. |
[20] | S. I. Abdelsalam, M. M. Bhatti, New insight into AuNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale, Sci. Rep., 9 (2019), 1-14. doi: 10.1038/s41598-018-37186-2 |
[21] | Y. Yang, Y. Zhang, E. Omairey, et al. Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen, J. Clean. Prod., 187 (2018), 390-399. doi: 10.1016/j.jclepro.2018.03.205 |
[22] | K. L. Hsiao, To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method, Energy, 130 (2017), 486-499. doi: 10.1016/j.energy.2017.05.004 |
[23] | M. Khan, M. Azam, A. Munir, On unsteady Falkner-Skan flow of MHD Carreau nanofluid past a static/moving wedge with convective surface condition, J. Mol. Liq., 230 (2017), 48-58. doi: 10.1016/j.molliq.2016.12.097 |
[24] | M. Waqas, M. I. Khan, T. Hayat, et al. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model, Comput. Method. Appl. Mech. Eng., 324 (2017), 640-653. doi: 10.1016/j.cma.2017.06.012 |
[25] | M. Khan, M. Irfan, W. A. Khan, Numerical assessment of solar energy aspects on 3D magnetoCarreau nanofluid: A revised proposed relation, Int. J. Hydrogen Energ., 42 (2017), 22054-22065. doi: 10.1016/j.ijhydene.2017.07.116 |
[26] | S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, California, 1995, 99-105. |
[27] | J. Buongiorno, Convective transport in nanofluids, J. Heat Trans., 128 (2006), 240. |
[28] | M. I. Khan, S. Qayyum, T. Hayat, et al. Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection, Phys. Lett. A, 382 (2018), 2017-2026. doi: 10.1016/j.physleta.2018.05.021 |
[29] | S. S. Ghadikolaei, K. Hosseinzadeh, D. D. Ganji, Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect, World J. Eng., 16 (2019), 51-63. doi: 10.1108/WJE-06-2018-0204 |
[30] | Y. Lin, Y. Jiang, Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: A numerical simulation, Int. J. Heat Mass Tran., 123 (2018), 569-582. doi: 10.1016/j.ijheatmasstransfer.2018.02.103 |
[31] | V. M. Falkner, S. W. Skan, Some approximate solutions of the boundary-layer equations, Philos. Mag., 12 (1931), 865-896. doi: 10.1080/14786443109461870 |
[32] | H. T. Lin, L. K. Lin, Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number, Int. J. Heat Mass Tran., 30 (1987), 1111-1118. doi: 10.1016/0017-9310(87)90041-X |
[33] | S. Nadeem, S. Ahmad, N. Muhammad, Computational study of Falkner-Skan problem for a static and moving wedge, Sensor. Actuat. B Chem., 263 (2018), 69-76. doi: 10.1016/j.snb.2018.02.039 |
[34] | F. A. Hendi, M. Hussain, Analytic solution for MHD Falkner-Skan flow over a porous surface, J. Appl. Math., 2012 (2012), 1-9. |
[35] | M. S. Alam, M. A. Khatun, M. M. Rahman, et al. Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers, Int. J. Mech. Sci., 105 (2016), 191-205 doi: 10.1016/j.ijmecsci.2015.11.018 |
[36] | M. Khan, M. Azam, A. S. Alshomrani, Unsteady slip flow of Carreau nanofluid over a wedge with nonlinear radiation and new mass flux condition, Results Phys., 7 (2017), 2261-2270. doi: 10.1016/j.rinp.2017.06.038 |
[37] | H. Sardar, L. Ahmad, M. Khan, et al. Investigation of mixed convection flow of Carreau nanofluid over a wedge in the presence of Soret and Dufour effects, Int. J. Heat Mass Tran., 137 (2019), 809-822. doi: 10.1016/j.ijheatmasstransfer.2019.03.132 |
[38] | H. T. Basha, R. Sivaraj, A. S. Reddy, et al. Impacts of temperature-dependent viscosity and variable Prandtl number on forced convective Falkner-Skan flow of Williamson nanofluid, SN Appl. Sci., 2 (2020), 1-14. |
[39] | H. T. Basha, R. Sivaraj, A. S. Reddy, et al. SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation-solar energy application, Eur. Phys. J. Spec. Top., 228 (2019), 2531-2551 |
[40] | W. Gao, M. Partohaghighi, H. Mehmet, et al. Regarding the group preserving scheme and method of line to the numerical simulations of Klein-Gordon model, Results Phys., 15 (2019), 1-7. |
[41] | W. Gao, H. F. Ismael, S. A. Mohammed, et al. Complex and real optical soliton properties of the paraxial non-linear Schrödinger equation in Kerr media with M-fractional, Front. Phys., 7 (2019), 1-8. doi: 10.3389/fphy.2019.00001 |
[42] | W. Gao, H. F. Ismael, H. Bulut, et al. Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr., 2019. |
[43] | W. Gao, B. Ghanbari, H. Günerhan, et al. Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrödinger equation, Mod. Phys. Lett. B, 34 (2020), 2050034. |
[44] | A. Ciancio, Analysis of time series with wavelets, Int. J. Wavelets, Multi., 5 (2007), 241-256. doi: 10.1142/S0219691307001744 |
[45] | A. Ciancio, A. Quartarone, A hybrid model for tumor-immune competition, U. P. B. Sci. Bull. Ser. A, 75 (2013), 125-136. |
[46] | A. Cordero, J. P. Jaiswal, J. R. Torregrosa, Stability analysis of fourth-order iterative method for finding multiple roots of non-linear equations, Appl. Math. Nonlinear Sci., 4 (2019), 43-56. doi: 10.2478/AMNS.2019.1.00005 |
[47] | P. K. Pandey, A new computational algorithm for the solution of second order initial value problems in ordinary differential equations, Appl. Math. Nonlinear Sci., 3 (2018), 167-174. doi: 10.21042/AMNS.2018.1.00013 |
[48] | H. Chen, J. Jiang, D. Cao, et al. Numerical investigation on global dynamics for nonlinear stochastic heat conduction via global random attractors theory, Appl. Math. Nonlinear Sci., 3 (2018), 175-186. doi: 10.21042/AMNS.2018.1.00014 |
[49] | L. F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003. |