Research article

Some results on p-adic valuations of Stirling numbers of the second kind

  • Received: 25 December 2019 Accepted: 16 April 2020 Published: 30 April 2020
  • MSC : 11B73, 11A07

  • Let $n$ and $k$ be nonnegative integers. The Stirling number of the second kind, denoted by $S(n, k)$, is defined as the number of ways to partition a set of $n$ elements into exactly $k$ nonempty subsets and we have $ S(n, k) = \frac{1}{k!}\sum\limits_{i = 0}^{k}(-1)^i\binom{k}{i}(k-i)^n. $ Let $p$ be a prime and $v_p(n)$ stand for the $p$-adic valuation of $n$, i.e., $v_p(n)$ is the biggest nonnegative integer $r$ with $p^r$ dividing $n$. Divisibility properties of Stirling numbers of the second kind have been studied from a number of different perspectives. In this paper, we present a formula to calculate the exact value of $p$-adic valuation of $S(n, n-k)$, where $n\ge k+1$ and $1\le k\le 7$. From this, for any odd prime $p$, we prove that $v_p((n-k)!S(n, n-k)) \lt n$ if $n\ge k+1$ and $0\le k\le 7$. It confirms partially Clarke's conjecture proposed in 1995. We also give some results on $v_p(S(ap^n, ap^n-k))$, where $a$ and $n$ are positive integers with $(a, p) = 1$ and $1\le k\le 7$.

    Citation: Yulu Feng, Min Qiu. Some results on p-adic valuations of Stirling numbers of the second kind[J]. AIMS Mathematics, 2020, 5(5): 4168-4196. doi: 10.3934/math.2020267

    Related Papers:

  • Let $n$ and $k$ be nonnegative integers. The Stirling number of the second kind, denoted by $S(n, k)$, is defined as the number of ways to partition a set of $n$ elements into exactly $k$ nonempty subsets and we have $ S(n, k) = \frac{1}{k!}\sum\limits_{i = 0}^{k}(-1)^i\binom{k}{i}(k-i)^n. $ Let $p$ be a prime and $v_p(n)$ stand for the $p$-adic valuation of $n$, i.e., $v_p(n)$ is the biggest nonnegative integer $r$ with $p^r$ dividing $n$. Divisibility properties of Stirling numbers of the second kind have been studied from a number of different perspectives. In this paper, we present a formula to calculate the exact value of $p$-adic valuation of $S(n, n-k)$, where $n\ge k+1$ and $1\le k\le 7$. From this, for any odd prime $p$, we prove that $v_p((n-k)!S(n, n-k)) \lt n$ if $n\ge k+1$ and $0\le k\le 7$. It confirms partially Clarke's conjecture proposed in 1995. We also give some results on $v_p(S(ap^n, ap^n-k))$, where $a$ and $n$ are positive integers with $(a, p) = 1$ and $1\le k\le 7$.


    加载中


    [1] L. Carlitz, Congruences for generalized Bell and Stirling numbers, Duke Math. J., 22 (1955), 193-205. doi: 10.1215/S0012-7094-55-02220-1
    [2] Y. H. Kwong, Minimum periods of S (n, k) modulo M, Fibonacci Quart., 27 (1989), 217-221.
    [3] O. Y. Chan, D. Manna, Congruences for Stirling numbers of the second kind, Contemp. Math., 517 (2010), 97-111. doi: 10.1090/conm/517/10135
    [4] F. Clarke, Hensel's lemma and the divisibility by primes of Stirling-like numbers, J. Number Theory, 52 (1995), 69-84. doi: 10.1006/jnth.1995.1056
    [5] D. M. Davis, Divisibility by 2 of Stirling-like numbers, Proc. Amer. Math. Soc., 110 (1990), 597-600.
    [6] S. F. Hong, J. R. Zhao, W. Zhao, The 2-adic valuations of Stirling numbers of the second kind, Int. J. Number Theory, 8 (2012), 1057-1066. doi: 10.1142/S1793042112500625
    [7] J. R. Zhao, S. F. Hong, W. Zhao, Divisibility by 2 of Stirling numbers of the second kind and their differences, J. Number Theory, 140 (2014), 324-348. doi: 10.1016/j.jnt.2014.01.005
    [8] W. Zhao, J. R. Zhao, S. F. Hong, The 2-adic valuations of differences of Stirling numbers of the second kind, J. Number Theory, 153 (2015), 309-320. doi: 10.1016/j.jnt.2015.01.016
    [9] T. Amdeberhan, D. Manna, V. Moll, The 2-adic valuation of Stirling numbers, Experiment. Math., 17 (2008), 69-82. doi: 10.1080/10586458.2008.10129026
    [10] T. Lengyel, On the 2-adic order of Stirling numbers of the second kind and their differences, DMTCS Proc. AK, (2009), 561-572.
    [11] S. F. Hong, On the p-adic behaviors of Stirling numbers of the first and second kinds, RIMS Kokyuroku Bessatsu, to appear.
    [12] S. F. Hong, M. Qiu, On the p-adic properties of Stirling numbers of the first kind, Acta Math. Hungar., in press.
    [13] T. Komatsu, P. Young, Exact p-adic valuations of Stirling numbers of the first kind, J. Number Theory, 177 (2017), 20-27. doi: 10.1016/j.jnt.2017.01.023
    [14] T. Lengyel, On the divisibility by 2 of Stirling numbers of the second kind, Fibonacci Quart., 32 (1994), 194-201.
    [15] M. Qiu, S. F. Hong, 2-Adic valuations of Stirling numbers of the first kind, Int. J. Number Theory, 15 (2019), 1827-1855. doi: 10.1142/S1793042119501021
    [16] S. D. Wannermacker, On 2-adic orders of Stirling numbers of the second kind, Integers, 5 (2005), A21, 7.
    [17] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974.
    [18] N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta-Functions, 2Eds., GTM 58, SpringerVerlag, New York, 1984.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3720) PDF downloads(377) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog