In this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the end, we deduce a Schur-type inequality for the gradient $ r $-Almost Newton-Yamabe soliton in $ (k, \mu) $-contact metric manifolds, static Riemannian manifolds, and normal homogeneous compact Riemannian manifolds coupled with a projected Casimir operator.
Citation: Mohd Danish Siddiqi, Fatemah Mofarreh. Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds[J]. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711
In this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the end, we deduce a Schur-type inequality for the gradient $ r $-Almost Newton-Yamabe soliton in $ (k, \mu) $-contact metric manifolds, static Riemannian manifolds, and normal homogeneous compact Riemannian manifolds coupled with a projected Casimir operator.
[1] | C. De Lellis, P. Topping, Almost-Schur lemma, Calc. Var., 43 (2012), 347–354. http://dx.doi.org/10.1007/s00526-011-0413-z |
[2] | X. Cheng, A generalization of almost-Schur lemma for closed Riemannian manifolds, Ann. Glob. Anal. Geom., 43 (2013), 153–160. http://dx.doi.org/10.1007/s10455-012-9339-8 doi: 10.1007/s10455-012-9339-8 |
[3] | X. Cheng, An almost-Schur lemma for symmetric (0, 2) tensor and applications, Pac. J. Math., 267 (2014), 325–340. http://dx.doi.org/10.2140/pjm.2014.267.325 doi: 10.2140/pjm.2014.267.325 |
[4] | Y. Ge, G. Wang, An almost-Schur theorem on 4-dimensional manifolds, Proc. Amer. Math. Soc., 140 (2012), 1041–1044. http://dx.doi.org/10.1090/S0002-9939-2011-11065-7 doi: 10.1090/S0002-9939-2011-11065-7 |
[5] | E. Barbosa, A note on the almost-Schur lemma on 4-dimensional Riemannian closed manifold, Proc. Amer. Math. Soc., 140 (2012), 4319–4322. http://dx.doi.org/10.1090/S0002-9939-2012-11255-9 doi: 10.1090/S0002-9939-2012-11255-9 |
[6] | P. Ho, Almost Schur lemma for manifolds with boundary, Differ. Geom. Appl., 32 (2014), 97–112. http://dx.doi.org/10.1016/j.difgeo.2013.11.006 doi: 10.1016/j.difgeo.2013.11.006 |
[7] | R. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–261. |
[8] | S. Güler, M. Crasmareanu, Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J. Math., 43 (2019), 2631–2641. http://dx.doi.org/10.3906/mat-1902-38 doi: 10.3906/mat-1902-38 |
[9] | M. D. Siddiqi, F. Mofarreh, M. A. Akyol, A. H. Hakami, $\eta$-Ricci-Yamabe solitons along Riemannian submersions, Axioms, 12 (2023), 796. http://dx.doi.org/10.3390/axioms12080796 doi: 10.3390/axioms12080796 |
[10] | M. D. Siddiqi, U. De, S. Deshmukh, Estimation of almost Ricci-Yamabe solitons on static spacetimes, Filomat, 36 (2022), 397–407. http://dx.doi.org/10.2298/FIL2202397S doi: 10.2298/FIL2202397S |
[11] | S. Pigola, M. Rigoli, M. Rimoldi, A. Setti, Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (2011), 757–799. http://dx.doi.org/10.2422/2036-2145.2011.4.01 |
[12] | A. W. Cunha, E. de Lima, H. de Lima, $r$-almost Newton-Ricci solitons immersed into a Riemannian manifold, J. Math. Anal. Appl., 464 (2018), 546–556. http://dx.doi.org/10.1016/j.jmaa.2018.04.026 doi: 10.1016/j.jmaa.2018.04.026 |
[13] | A. Cunha, E. de Lima, $r$-almost Yamabe solitons in Lorentzian manifolds, Palestine Journal of Mathematics, 11 (2022), 521–530. |
[14] | U. C. De, M. D. Siddiqi, S. K. Chaubey, $r$-almost Newton-Ricci solitons on Legenderian submanifolds of Sasakian space forms, Period. Math. Hung., 84 (2022), 76–88. http://dx.doi.org/10.1007/s10998-021-00394-x doi: 10.1007/s10998-021-00394-x |
[15] | M. D. Siddiqi, Newton-Ricci Bourguignon almost solitons on Lagrangian submanifolds of complex space form, Acta Universitatis Apulensis, 63 (2020), 81–96. http://dx.doi.org/10.17114/j.aua.2020.63.07 doi: 10.17114/j.aua.2020.63.07 |
[16] | M. D. Siddiqi, Ricci $\rho$-soliton and geometrical structure in a dust fluid and viscous fluid sapcetime, Bulg. J. Phys., 46 (2019), 163–173. |
[17] | M. D. Siddiqi, S. A. Siddiqui, M. Ahmad, $r$-almost Newton-Yamabe solitons on submanifolds of Kenmotsu space forms, Palestine Journal of Mathematics, 11 (2022), 427–438. |
[18] | R. Sharma, Almost Ricci solitons and $K$-contact geometry, Monatsh. Math., 175 (2014), 621–628. http://dx.doi.org/10.1007/s00605-014-0657-8 doi: 10.1007/s00605-014-0657-8 |
[19] | R. Sharma, Certain results on $K$-contact and $(k, \mu)$-contact manifolds, J. Geom., 89 (2008), 138–147. http://dx.doi.org/10.1007/s00022-008-2004-5 doi: 10.1007/s00022-008-2004-5 |
[20] | M. Tripathi, M. Dwaivedi, The structure of some classes of $K$-contact manifolds, Proc. Math. Sci., 118 (2008), 371–379. http://dx.doi.org/10.1007/s12044-008-0029-1 doi: 10.1007/s12044-008-0029-1 |
[21] | M. D. Siddiqi, Almost conformal Ricci solitons in $(k, \mu)$-paracontact metric manifolds, Palestine Journal of Mathematics, 9 (2020), 832–840. |
[22] | S. Kaneyuki, F. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173–187. http://dx.doi.org/10.1017/S0027763000021565 doi: 10.1017/S0027763000021565 |
[23] | S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37–60. http://dx.doi.org/10.1007/s10455-008-9147-3 doi: 10.1007/s10455-008-9147-3 |
[24] | D. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319–324. http://dx.doi.org/10.2748/tmj/1178240602 doi: 10.2748/tmj/1178240602 |
[25] | D. Blair, T. Koufogiorgos, R. Sharma, A classification of $3$-dimensional contact metric manifolds with $Q\phi = \phi Q$, Kodai Math. J., 13 (1990), 391–401. http://dx.doi.org/10.2996/kmj/1138039284 doi: 10.2996/kmj/1138039284 |
[26] | B. Papantoniou, Contact Riemannian manifolds satisfying $R(\xi, X)R = 0$ and $\xi\in (k, \mu)$-nullity distribution, Yokohama Mathematical Journal, 40 (1993), 149–161. |
[27] | D. Blair, T. Koufogiorgos, B. Papantoniou, Contact metric manifolds staisfying a nullity condition, Israel J. Math., 91 (1995), 189–214. http://dx.doi.org/10.1007/BF02761646 doi: 10.1007/BF02761646 |
[28] | E. Boeckx, A full classification of contact metric $(k, \mu)$-spaces, Illinois J. Math., 44 (2000), 212–219. http://dx.doi.org/10.1215/ijm/1255984960 doi: 10.1215/ijm/1255984960 |
[29] | H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., 117 (1993), 217–239. |
[30] | S. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659–670. |
[31] | S. Brendle, Constant mean curvature surfaces in warped product manifolds, Publ. Math. IHES, 117 (2013), 247–269. http://dx.doi.org/10.1007/s10240-012-0047-5 doi: 10.1007/s10240-012-0047-5 |
[32] | J. Faraut, Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl., 58 (1979), 369–444. |
[33] | S. Helgason, Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions, Providence: American Mathematical Society, 1984. |
[34] | G. Lippner, D. Mangoubi, Z. McGuirk, R. Yovel, Strong convexity for harmonic functions on compact symmetric spaces, Proc. Amer. Math. Soc., 150 (2022), 1613–1622. http://dx.doi.org/10.1090/proc/15735 doi: 10.1090/proc/15735 |