Research article

Vector fields on bifurcation diagrams of quasi singularities

  • Received: 03 October 2024 Revised: 11 December 2024 Accepted: 13 December 2024 Published: 26 December 2024
  • MSC : 57R45, 53A05

  • We describe the generators of the vector fields tangent to the bifurcation diagrams and caustics of simple quasi boundary singularities. As an application, submersions on the pair $ (G, B) $, which consists of a cuspidal edge $ G $ in $ \mathbb{R}^3 $ that contains a distinguishing regular curve $ B $, are classified. This classification was used as a means to investigate the contact that a general cuspidal edge $ G $ equipped with a regular curve $ B\subset G $ has with planes. The singularities of the height functions on $ (G, B) $ are discussed and they are related to the curvatures and torsions of the distinguished curves on the cuspidal edge. In addition to this, the discriminants of the versal deformations of the submersions that were accomplished are described and they are related to the duality of the cuspidal edge.

    Citation: Fawaz Alharbi, Yanlin Li. Vector fields on bifurcation diagrams of quasi singularities[J]. AIMS Mathematics, 2024, 9(12): 36047-36068. doi: 10.3934/math.20241710

    Related Papers:

  • We describe the generators of the vector fields tangent to the bifurcation diagrams and caustics of simple quasi boundary singularities. As an application, submersions on the pair $ (G, B) $, which consists of a cuspidal edge $ G $ in $ \mathbb{R}^3 $ that contains a distinguishing regular curve $ B $, are classified. This classification was used as a means to investigate the contact that a general cuspidal edge $ G $ equipped with a regular curve $ B\subset G $ has with planes. The singularities of the height functions on $ (G, B) $ are discussed and they are related to the curvatures and torsions of the distinguished curves on the cuspidal edge. In addition to this, the discriminants of the versal deformations of the submersions that were accomplished are described and they are related to the duality of the cuspidal edge.



    加载中


    [1] V. M. Zakalyukin, Reconstructions of fronts and caustics depending on a parameter and versality of mappings, J. Math. Sci., 27 (1984), 2713–2735. https://doi.org/10.1007/BF01084818 doi: 10.1007/BF01084818
    [2] V. Arnold, Wave front evolution and equivariant Morse lemma, Commun. Pur. Appl. Math., 29 (1976), 557–582. https://doi.org/10.1002/cpa.3160290603 doi: 10.1002/cpa.3160290603
    [3] J. W. Bruce, Vector fields on discriminants and bifurcation varieties, Bull. London Math. Soc., 17 (1985), 257–262. https://doi.org/10.1112/blms/17.3.257 doi: 10.1112/blms/17.3.257
    [4] A. Alghanemi, A. Alghawazi, The $\lambda$-point map between two Legendre plane curves, Mathematics, 11 (2023), 977–997. https://doi.org/10.3390/math11040997 doi: 10.3390/math11040997
    [5] T. Fukui, M. Hasegawa, Singularities of parallel surfaces, Tohoku Math. J., 64 (2012), 387–408. https://doi.org/10.2748/tmj/1347369369 doi: 10.2748/tmj/1347369369
    [6] Y. Li, E. Guler, Right conoids demonstrating a Time-like axis within minkowski Four-Dimensional space, Mathematics, 12 (2024), 2421. https://doi.org/10.3390/math12152421 doi: 10.3390/math12152421
    [7] Y. Li, H. Abdel-Aziz, H. Serry, F. El-Adawy, M. Saad, Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space, AIMS Math., 9 (2024), 25619–25635. https://doi.org/10.3934/math.20241251 doi: 10.3934/math.20241251
    [8] Y. Li N. Turki, S. Deshmukh, O. Belova, Euclidean hypersurfaces isometric to spheres, AIMS Math., 9 (2024), 28306–28319. https://doi.org/10.3934/math.20241373 doi: 10.3934/math.20241373
    [9] Y. Li, M. S. Siddesha, H. A. Kumara, M. M. Praveena, Characterization of Bach and Cotton Tensors on a Class of Lorentzian Manifolds, Mathematics, 12 (2024), 3130. https://doi.org/10.3390/math12193130 doi: 10.3390/math12193130
    [10] Y. Li, S. Bhattacharyya, S. Azami, Li-Yau type estimation of a semilinear parabolic system along geometric flow, J. Inequal Appl., 131 (2024). https://doi.org/10.1186/s13660-024-03209-y doi: 10.1186/s13660-024-03209-y
    [11] Y. Li, A. K. Mallick, A. Bhattacharyya, M. S. Stankovic, A conformal $\eta$-Ricci soliton on a Four-Dimensional lorentzian Para-Sasakian manifold, Axioms, 13 (2024), 753. https://doi.org/10.3390/axioms13110753 doi: 10.3390/axioms13110753
    [12] F. Alharbi, V. Zakalyukin, Quasi corner singularities, P. Steklov I. Math., 270 (2010), 1–14. https://doi.org/10.1134/S0081543810030016 doi: 10.1134/S0081543810030016
    [13] F. Alharbi, Quasi cusp singularities, J. Sing., 12 (2015), 1–18. https://doi.org/10.5427/jsing.2015.12a doi: 10.5427/jsing.2015.12a
    [14] F. Alharbi, S. Alsaeed, Quasi semi-border singularities, Mathematics, 7 (2019), 495. https://doi.org/10.3390/math7060495 doi: 10.3390/math7060495
    [15] F. Alharbi, Bifurcation diagrams and caustics of simple quasi border singularities, Topo. Appl., 9 (2012), 381–388. https://doi.org/10.1016/j.topol.2011.09.011 doi: 10.1016/j.topol.2011.09.011
    [16] J. W. Bruce, J. M. West, Functions on cross-caps, Math. Proc. Cambridge, 123 (1988), 19–39.
    [17] A. P. Francisco, Functions on a swallowtail, arXiv Prep., 53 (2023), 52–74. https://doi.org/10.48550/arXiv.1804.09664 doi: 10.48550/arXiv.1804.09664
    [18] R. O. Sinha, F. Tari, On the geometry of the cuspidal edge, Osaka J. Math., 55 (2018), 393–421.
    [19] R. O. Sinha, K. Saji, On the geometry of folded cuspidal edges, Rev. Mat. Complut., 31 (2018), 627–650. https://doi.org/10.1007/s13163-018-0257-6 doi: 10.1007/s13163-018-0257-6
    [20] J. Damon, A-equivalence and the equivalence of sections of images and discriminants, Singular. Theory Appl., 1462 (1991), 93–121. https://doi.org/10.1007/BFb0086377 doi: 10.1007/BFb0086377
    [21] D. Mond, R. Buchweitz, Linear free divisors and quiver representations, London Math. Soc. Lecture Note Ser., 324 (2005), 18–20.
    [22] V. Arnold, Singularities of caustics and wave fronts, Dordrecht: Kluwer Academic Publishers, 1990.
    [23] J. W. Bruce, P. J. Giblin, Curves and singularities: A geometrical introduction to singularity theory, Cambridge University Press, 1984.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(176) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog