Research article

Extended Hermite–Hadamard inequalities

  • Received: 17 November 2024 Revised: 17 December 2024 Accepted: 19 December 2024 Published: 26 December 2024
  • MSC : 26A33, 46N10, 46N20

  • In this manuscript, we formulated Hermite–Hadamard inequalities for convex functions by employing cotangent integrals. Additionally, we extended these Hermite–Hadamard inequalities to encompass cotangent integrals and give the application.

    Citation: Lakhlifa Sadek, Ali Algefary. Extended Hermite–Hadamard inequalities[J]. AIMS Mathematics, 2024, 9(12): 36031-36046. doi: 10.3934/math.20241709

    Related Papers:

  • In this manuscript, we formulated Hermite–Hadamard inequalities for convex functions by employing cotangent integrals. Additionally, we extended these Hermite–Hadamard inequalities to encompass cotangent integrals and give the application.



    加载中


    [1] D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360
    [2] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [3] L. Sadek, Controllability, observability, and stability of $\phi$‐conformable fractional linear dynamical systems, Asian J. Control, 26 (2024), 2476–2494. https://doi.org/10.1002/asjc.3348 doi: 10.1002/asjc.3348
    [4] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Philadelphia: Gordon and Breach Science Publishers, 1993.
    [6] L. Sadek, A cotangent fractional derivative with the application, Fractal Fract., 7 (2023), 444. https://doi.org/10.3390/fractalfract7060444 doi: 10.3390/fractalfract7060444
    [7] L. Sadek, T. A. Lazar, On Hilfer cotangent fractional derivative and a particular class of fractional problems, AIMS Mathematics, 8 (2023), 28334–28352. https://doi.org/10.3934/math.20231450 doi: 10.3934/math.20231450
    [8] L. Sadek, D. Baleanu, M. S. Abdo, W. Shatanawi, Introducing novel $\Theta$-fractional operators: Advances in fractional calculus, J. King Saud Univ. Sci., 36 (2024), 103352. https://doi.org/10.1016/j.jksus.2024.103352 doi: 10.1016/j.jksus.2024.103352
    [9] L. Sadek, Controllability and observability for fractal linear dynamical systems, J. Vib. Control, 29 (2023), 4730–4740. https://doi.org/10.1177/10775463221123354 doi: 10.1177/10775463221123354
    [10] L. Sadek, Stability of conformable linear infinite-dimensional systems, Int. J. Dynam. Control, 11 (2023), 1276–1284. https://doi.org/10.1007/s40435-022-01061-w doi: 10.1007/s40435-022-01061-w
    [11] P. Agarwal, J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc., 53 (2016), 1183–1210. http://dx.doi.org/10.4134/JKMS.j150458 doi: 10.4134/JKMS.j150458
    [12] L. Sadek, A. Akgül, New properties for conformable fractional derivative and applications, Prog. Fract. Differ. Appl., 10 (2024), 335–344. http://dx.doi.org/10.18576/pfda/100301 doi: 10.18576/pfda/100301
    [13] K. E. Muller, Computing the confluent hypergeometric function, $M (a, b, x)$, Numer. Math., 90 (2001), 179–196. https://doi.org/10.1007/s002110100285 doi: 10.1007/s002110100285
    [14] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover Publications, 1965.
    [15] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [16] F. Chen, Extensions of the Hermite–Hadamard inequality for convex functions via fractional integrals, J. Math. Inequal., 10 (2016), 75–81. https://doi.org/10.7153/jmi-10-07 doi: 10.7153/jmi-10-07
    [17] P. Agarwal, M. Jleli, M. Tomar, Certain Hermite–Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 55. https://doi.org/10.1186/s13660-017-1318-y doi: 10.1186/s13660-017-1318-y
    [18] P. Agarwal, Some inequalities involving Hadamard‐type k‐fractional integral operators, Math. Meth. Appl. Sci., 40 (2017), 3882–3891. https://doi.org/10.1002/mma.4270 doi: 10.1002/mma.4270
    [19] D. M. Nie, S. Rashid, A. O. Akdemir, D. Baleanu, J. B. Liu, On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Mathematics, 7 (2019), 727. https://doi.org/10.3390/math7080727 doi: 10.3390/math7080727
    [20] S. S. Zhou, S. Rashid, S. S. Dragomir, M. A. Latif, A. O. Akdemir, J. B. Liu, Some new inequalities involving $k$‐fractional integral for certain classes of functions and their applications, J. Funct. Space, 2020 (2020), 5285147. https://doi.org/10.1155/2020/5285147 doi: 10.1155/2020/5285147
    [21] S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J. B. Liu, On Gruss inequalities within generalized K-fractional integrals, Adv. Differ. Equ., 2020 (2020), 203. https://doi.org/10.1186/s13662-020-02644-7 doi: 10.1186/s13662-020-02644-7
    [22] S. Rashid, M. A. Noor, K. I. Noor, F. Safdar, Y. M. Chu, Hermite–Hadamard type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 956. https://doi.org/10.3390/math7100956 doi: 10.3390/math7100956
    [23] S. Rashid, T. Abdeljawad, F. Jarad, M. A. Noor, Some estimates for generalized Riemann–Liouville fractional integrals of exponentially convex functions and their applications, Mathematics, 7 (2019), 807. https://doi.org/10.3390/math7090807 doi: 10.3390/math7090807
    [24] S. Rashid, M. A. Latif, Z. Hammouch, Y. M. Chu, Fractional integral inequalities for strongly h-preinvex functions for ak th order differentiable functions, Symmetry, 11 (2019), 1448. https://doi.org/10.3390/sym11121448 doi: 10.3390/sym11121448
    [25] M. Z. Sarikaya, N. Alp, On Hermite–Hadamard–Fejér type integral inequalities for generalized convex functions via local fractional integrals, Open J. Math. Sci., 3 (2019), 273–284. https://doi.org/10.30538/oms2019.0070 doi: 10.30538/oms2019.0070
    [26] G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci., 3 (2019), 210–216. https://doi.org/10.30538/oms2019.0064 doi: 10.30538/oms2019.0064
    [27] P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020 (2020), 363. https://doi.org/10.1186/s13662-020-02825-4 doi: 10.1186/s13662-020-02825-4
    [28] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications, J. Funct. Space, 2020 (2020), 4352357. https://doi.org/10.1155/2020/4352357 doi: 10.1155/2020/4352357
    [29] M. Kirane, B. Samet, Discussion of some inequalities via fractional integrals, J. Inequal. Appl., 2018 (2018), 19. https://doi.org/10.1186/s13660-017-1609-3 doi: 10.1186/s13660-017-1609-3
    [30] T. Du, Y. Long, The multi-parameterized integral inequalities for multiplicative Riemann–Liouville fractional integrals, J. Math. Anal. Appl., 541 (2025), 128692. https://doi.org/10.1016/j.jmaa.2024.128692 doi: 10.1016/j.jmaa.2024.128692
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(116) PDF downloads(19) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog