With the continuous development of digital finance, the correlation among urban digital finance has been increasing. In this paper, we further apply machine learning methods to study the driving factors of urban digital finance networks based on the construction of urban digital finance spatial network associated with a sample of 278 cities in China. The results of network characteristics analysis show that the core-edge structure of an urban digital finance network shows the characteristics of gradual deepening and orderly distribution; the core cities show reciprocal relationships with each other, and the edge cities lack connection with each other; the core cities match the structural hole distribution and the edge cities are limited by the network capital in their development. The results of driver analysis show that year-end loan balances, science and technology expenditures and per capita gross regional product are the main drivers of urban digital financial networks.
Citation: Xiaojie Huang, Gaoke Liao. Identifying driving factors of urban digital financial network—based on machine learning methods[J]. Electronic Research Archive, 2022, 30(12): 4716-4739. doi: 10.3934/era.2022239
With the continuous development of digital finance, the correlation among urban digital finance has been increasing. In this paper, we further apply machine learning methods to study the driving factors of urban digital finance networks based on the construction of urban digital finance spatial network associated with a sample of 278 cities in China. The results of network characteristics analysis show that the core-edge structure of an urban digital finance network shows the characteristics of gradual deepening and orderly distribution; the core cities show reciprocal relationships with each other, and the edge cities lack connection with each other; the core cities match the structural hole distribution and the edge cities are limited by the network capital in their development. The results of driver analysis show that year-end loan balances, science and technology expenditures and per capita gross regional product are the main drivers of urban digital financial networks.
[1] | E. F. Boamah, N. S. Murshid, M. G. N. Mozumder, A network understanding of FinTech (in) capabilities in the global South, Appl. Geogr., 135 (2021), 102538. https://doi.org/10.1016/j.apgeog.2021.102538 doi: 10.1016/j.apgeog.2021.102538 |
[2] | J. Huang, W. Zhang, W. Ruan, Spatial spillover and impact factors of the internet finance development in China, Physica A, 527 (2019), 121390. https://doi.org/10.1016/j.physa.2019.121390 doi: 10.1016/j.physa.2019.121390 |
[3] | A. Metzler, Y. Zhou, C. Grace, Learning about financial health in Canada, Quant. Finance Econ., 5 (2021), 542–570. https://doi.org/10.2139/ssrn.3507769 doi: 10.2139/ssrn.3507769 |
[4] | R. Haas, A. Ajanovic, J. Ramsebner, T. Perger, J. Knápek, J. W. Bleyl, Financing the future infrastructure of sustainable energy systems, Green Finance, 3 (2021), 90–118. https://doi.org/10.3934/gf.2021006 doi: 10.3934/gf.2021006 |
[5] | M. Dubyna, A. Zhavoronok, N. Kudlaieva, I. Lopashchuk, Transformation of household credit behavior in the conditions of digitalization of the financial services market, J. Optim. Ind. Eng., 14 (2021), 195–201. https://doi.org/10.32843/infrastruct62-28 doi: 10.32843/infrastruct62-28 |
[6] | K. Peng, G. Yan, A survey on deep learning for financial risk prediction, Quant. Finance Econ., 5 (2021), 716–737. https://doi.org/10.3934/qfe.2021032 doi: 10.3934/qfe.2021032 |
[7] | G. J. Larios-Hernández, Blockchain entrepreneurship opportunity in the practices of the unbanked, Bus. Horiz., 60 (2017), 865–874. https://doi.org/10.1016/j.bushor.2017.07.012 doi: 10.1016/j.bushor.2017.07.012 |
[8] | Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies, Finance Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308 |
[9] | T. Li, J. Ma, Does digital finance benefit the income of rural residents? A case study on China, Quant. Finance Econ., 5 (2021), 664–688. https://doi.org/10.3934/qfe.2021030 doi: 10.3934/qfe.2021030 |
[10] | S. Chen, H. Zhang, Does digital finance promote manufacturing servitization: micro evidence from China, Int. Rev. Econ. Finance, 76 (2021), 856–869. https://doi.org/10.1016/j.iref.2021.07.018 doi: 10.1016/j.iref.2021.07.018 |
[11] | Z. Huang, H. Dong, S. Jia, Equilibrium pricing for carbon emission in response to the target of carbon emission peaking, Energy Econ., 112 (2022), 106160. https://doi.org/10.1016/j.eneco.2022.106160 doi: 10.1016/j.eneco.2022.106160 |
[12] | B. Lin, R. Ma, How does digital finance influence green technology innovation in China? Evidence from the financing constraints perspective, J. Environ. Manage., 320 (2022), 115833. https://doi.org/10.1016/j.jenvman.2022.115833 doi: 10.1016/j.jenvman.2022.115833 |
[13] | Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa Istanbul Rev., 2022 (2022). https://doi.org/10.1016/j.bir.2022.10.006 doi: 10.1016/j.bir.2022.10.006 |
[14] | X. Lu, J. Guo, H. Zhou, Digital financial inclusion development, investment diversification, and household extreme portfolio risk, Account. Finance, 61 (2021), 6225–6261. https://doi.org/10.1111/acfi.12863 doi: 10.1111/acfi.12863 |
[15] | R. Ye, Y. Xie, N. An, Y. Lin, Influence Analysis of digital financial risk in China's economically developed regions under COVID-19: Based on the skew-normal panel data model, Front. Public Health, 10 (2022). https://doi.org/10.3389/fpubh.2022.822097 doi: 10.3389/fpubh.2022.822097 |
[16] | J. Li, Y. Wu, J. Xiao, The impact of digital finance on household consumption: Evidence from China, Econo. Modell., 86 (2020), 317–326. https://doi.org/10.1016/j.econmod.2019.09.027 doi: 10.1016/j.econmod.2019.09.027 |
[17] | Z. Wang, D. Zhang, J. Wang, How does digital finance impact the leverage of Chinese households, Appl. Econ. Lett., 29 (2022), 555–558. https://doi.org/10.1080/13504851.2021.1875118 doi: 10.1080/13504851.2021.1875118 |
[18] | F. Meng, W. Zhang, Digital finance and regional green innovation: Evidence from Chinese cities, Environ. Sci. Pollut. Res., 29 (2022), 1–24. https://doi.org/10.1007/s11356-022-22072-2 doi: 10.1007/s11356-022-22072-2 |
[19] | Z. Wang, Z. Zhang, X. Jin, A study on the spatial network characteristics and effects of CDW generation in China, Waste Manage., 128 (2021), 179–188. https://doi.org/10.1016/j.wasman.2021.03.022 doi: 10.1016/j.wasman.2021.03.022 |
[20] | P. Barucca, F. Lillo, Disentangling bipartite and core-periphery structure in financial networks, Chaos, Solitons Fractals, 88 (2016), 244–253. https://doi.org/10.1016/j.chaos.2016.02.004 doi: 10.1016/j.chaos.2016.02.004 |
[21] | J. Rodon Modol, B. Eaton, Digital infrastructure evolution as generative entrenchment: The formation of a core–periphery structure, J. Inf. Technol., 36 (2021), 342–364. https://doi.org/10.1177/02683962211013362 doi: 10.1177/02683962211013362 |
[22] | F. Guo, J. Wang, F. Wang, T. Kong, X. Zhang, Z. Cheng, Measuring the development of digital inclusive finance in China: Index compilation and spatial characteristics, Econ. Q., 19 (2020), 1401–1418. https://doi.org/10.13821/j.cnki.ceq.2020.03.12 doi: 10.13821/j.cnki.ceq.2020.03.12 |
[23] | S. Feng, R. Zhang, G. Li, Environmental decentralization, digital finance and green technology innovation, Struct. Change Econ. Dyn., 61 (2022), 70–83. https://doi.org/10.1016/j.strueco.2022.02.008 doi: 10.1016/j.strueco.2022.02.008 |
[24] | S. Chen, J. Zhong, P. Failler, Does China transmit financial cycle spillover effects to the G7 countries, Econ. Res. Ekonomska Istraživanja, 35 (2021), 5184–5201. https://doi.org/10.1080/1331677x.2021.2025123 doi: 10.1080/1331677x.2021.2025123 |
[25] | G. Liao, Z. Li, M. Wang, K. Albitar, Measuring China's urban digital finance, Quant. Finance Econ., 6 (2022), 385–404. https://doi.org/10.3934/qfe.2022017 doi: 10.3934/qfe.2022017 |
[26] | Y. Ye, Y. Pu, A. Xiong, The impact of digital finance on household participation in risky financial markets: Evidence-based study from China, PloS One, 17 (2022), e0265606. https://doi.org/10.1371/journal.pone.0265606 doi: 10.1371/journal.pone.0265606 |
[27] | Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity, Econ. Res. Ekonomska Istraživanja, 35 (2022), 4902–4921. https://doi.org/10.1080/1331677x.2021.2019596 doi: 10.1080/1331677x.2021.2019596 |
[28] | G. Liao, P. Hou, X. Shen, K. Albitar, The impact of economic policy uncertainty on stock returns: The role of corporate environmental responsibility engagement, Int. J. Finance Econ., 26 (2021), 4386–4392. https://doi.org/10.1002/ijfe.2020 doi: 10.1002/ijfe.2020 |
[29] | X. Liu, J. Zhu, J. Guo, C. Cui, Spatial association and explanation of China's digital financial inclusion development based on the network analysis method, Complexity, 2021 (2021). https://doi.org/10.1155/2021/6649894 doi: 10.1155/2021/6649894 |
[30] | H. Lin, Z. Zhang, The impacts of digital finance development on household income, consumption, and financial asset holding: An extreme value analysis of China's microdata, Pers. Ubiquitous Comput., 2022 (2022), 1–21. https://doi.org/10.1007/s00779-022-01667-z doi: 10.1007/s00779-022-01667-z |
[31] | S. Chen, Y. Wang, K. Albitar, Z. Huang, Does ownership concentration affect corporate environmental responsibility engagement? The mediating role of corporate leverage, Borsa Istanbul Rev., 21 (2021), S13–S24. https://doi.org/10.1016/j.bir.2021.02.001 doi: 10.1016/j.bir.2021.02.001 |
[32] | Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from China, Emerging Mark. Finance Trade, 56 (2020), 1336–1350. https://doi.org/10.1080/1540496x.2019.1658076 doi: 10.1080/1540496x.2019.1658076 |
[33] | H. Dong, M. Du, X. Zhou, Spatial-temporal differentiation and dynamic evolution of digital finance inclusive development in the Yangtze River delta economic cluster of china, Mobile Inf. Syst., 2022 (2022). https://doi.org/10.1155/2022/5470373 doi: 10.1155/2022/5470373 |
[34] | J. Li, F. Sun, M. Li, A study on the impact of digital finance on regional productivity growth based on artificial neural networks, Comput. Intell. Neurosci., 2022 (2022). https://doi.org/10.1155/2022/7665954 doi: 10.1155/2022/7665954 |
[35] | X. Wang, J. Guan, Financial inclusion: measurement, spatial effects and influencing factors, Appl. Econ., 49 (2017), 1751–1762. https://doi.org/10.1080/00036846.2016.1226488 doi: 10.1080/00036846.2016.1226488 |
[36] | Y. Yao, D. Hu, C. Yang, Y. Tan, The impact and mechanism of fintech on green total factor productivity, Green Finance, 3 (2021), 198–221. https://doi.org/10.3934/gf.2021011 doi: 10.3934/gf.2021011 |
[37] | J. E. Anderson, Y. V. Yotov, Short run gravity, J. Int. Econ., 126 (2020), 103341. https://doi.org/10.1016/j.jinteco.2020.103341 doi: 10.1016/j.jinteco.2020.103341 |
[38] | X. Gao, A. Zhang, Z. Sun, How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China, Land Use Policy, 90 (2020), 104329. https://doi.org/10.1016/j.landusepol.2019.104329 doi: 10.1016/j.landusepol.2019.104329 |
[39] | X. Zhang, Y. Geng, Y. W. Tong, H. W. Kua, X. Tian, R. Wu, et al., Spatial characteristics and its driving factors of low-carbon energy technology innovation in China: A gravity movement and exploratory spatial data analysis, J. Cleaner Prod., 295 (2021), 126481. https://doi.org/10.1016/j.jclepro.2021.126481 doi: 10.1016/j.jclepro.2021.126481 |
[40] | M. Wang, R. Gu, M. Wang, J. Zhang, Research on the impact of finance on promoting technological innovation based on the state-space model, Green Finance, 3 (2021), 119–137. https://doi.org/10.3934/gf.2021007 doi: 10.3934/gf.2021007 |
[41] | S. P. Borgatti, M. G. Everett, Models of core/periphery structures, Social Netw., 21 (2000), 375–395. https://doi.org/10.1016/s0378-8733(99)00019-2 doi: 10.1016/s0378-8733(99)00019-2 |
[42] | S. Ng, Boosting recessions, Can. J. Econ./Revue canadienne d'économique, 47 (2014), 1–34. https://doi.org/10.1111/caje.12070 doi: 10.1111/caje.12070 |
[43] | B. Mahbooba, M. Timilsina, R. Sahal, M. Serrano, Explainable artificial intelligence (XAI) to enhance trust management in intrusion detection systems using decision tree model, Complexity, 2021 (2021). https://doi.org/10.1155/2021/6634811 doi: 10.1155/2021/6634811 |
[44] | N. Meinshausen, P. Bühlmann, Stability selection, J. R. Stat. Soc. B, 72 (2010), 417–473. https://doi.org/10.1111/j.1467-9868.2010.00740.x doi: 10.1111/j.1467-9868.2010.00740.x |
[45] | Z. Li, J. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Finance Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303 |
[46] | L. Katusiime, International monetary spillovers and macroeconomic stability in developing countries, Natl. Account. Rev., 3 (2021), 310–329. https://doi.org/10.3934/nar.2021016 doi: 10.3934/nar.2021016 |
[47] | S. Chen, H. Zhang, Does digital finance promote manufacturing servitization: Micro evidence from China, Int. Rev. Econ. Finance, 76 (2021), 856–869. https://doi.org/10.1016/j.iref.2021.07.018 doi: 10.1016/j.iref.2021.07.018 |
[48] | Z. Cındık, I. H. Armutlulu, A revision of Altman Z-Score model and a comparative analysis of Turkish companies' financial distress prediction, Natl. Account. Rev., 3 (2021), 237–255. https://doi.org/10.3934/nar.2021012 doi: 10.3934/nar.2021012 |
[49] | T. Li, X. Li, G. Liao, Business cycles and energy intensity. Evidence from emerging economies, Borsa Istanbul Rev., 22 (2022), 560–570. https://doi.org/10.1016/j.bir.2021.07.005 doi: 10.1016/j.bir.2021.07.005 |