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1. Introduction

One of the core tools in singularity theory is to classify functions on a certain space equipped
with a distinguished hyperspace in it. The infinitesimal level problems of this kind require finding
diffeomorphisms of the ambient space such that this hypersurface is preserved. In order to construct
these diffeomorphisms, it is necessary to provide a description of the generators of vector fields
that are parallel to the hypersurface. Many authors have studied algorithm and algebraic aspects of
such vector fields (see for example [1–3]) to classify singularities of maps (functions) between two
manifolds that can be constructed from the differential geometry point of view (see e.g. [4, 5]. Further
motivations of the topics can be found in various relevant papers with differential geometry [6–8]
and submanifolds theory [9–11]. The classification can help study manifolds via other functions such
as the height function and distance squared function. In many cases, this hypersurface appears as a
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discriminant (or bifurcarion diagram) or caustics of versal deformation of classes with respect to a
standard equivalence relation.

In a series of papers [12–14], a new non-standard equivalence relation, on a space Rn equipped
with a variety Γ, are studied, and, consequently, simple classes were obtained. Classification of
projections of Lagrangian manifolds endowed with a hypersurface Γ is accomplished through the
utilization of these classes. As a result of the classification, the bifurcation diagrams and caustics
of versal unfolding of simple classes were described in [15], which were conduct in a different manner.
In particular, let G(z, u) = G̃(z, u) + u0, with z ∈ Rn and u = (u0, u1 . . . , us) as parameters, be a
versal unfolding of the simple g(z) = G(z, 0) with respect to the quasi equivalence relation. Then, the
respective bifurcation diagram in the space of parameters consists of two components W0, which is the
standard discriminant given by the equations G = 0 and ∂G

∂z = 0 and W1, which is contained in W0

and it is determined by constraints that define Γ. The caustics is in the unfolding base ũ = (u1, . . . , us)
(which does not include λ0),and consists of two parts Σ0 which represents the singular set image of W0

under the projection π : u→ ũ and Σ1 = π(W1). The preceding construction yields that the bifurcation
diagrams is a pair W = (W0,W1), where W0 is a hypersurface in Rs

u and W1 ⊂ W0, while the caustics is
the union Σ∗ = Σ0 ∪ Σ1 with dim(Σ0) = dim(Σ1).

In this work, in Section 2, we calculate the generators of the vector fields that are parallel to
the quasi bifurcation diagrams and caustics, obtained in [15]. This implies that, for the bifurcation
diagrams, we seek vector fields that preserve not only W0 but also the points of W0, and for the caustics,
we seek vector fields that preserve both Σ0 and Σ1.

Singularity theory techniques and differential geometry tools can be employed to comprehend the
geometry of an object by examining its interaction with planar objects, such as planes or lines. In
order to determine the former, it is necessary to analyze the singularities of the height functions along
particular directions, which define the object’s contact with the plane orthogonal to that direction.
Many authors have investigated the contact with planes of singular surfaces, including the cross-
cap [16], the swallowtail [17], the cuspidal edge [18], and the folded cuspidal edges [19].

Thus, as an application, in Section 3, we consider a cuspidal edge G equipped with a distinguished
regular curveB in it. The object appears as a bifurcation diagram of the quasi boundary class B3. We
then apply the module of vector fields obtained in Section 2 to classify submersions on the pair (G, B).
Then, we use such classification to study the contact of a general cuspidal edge equipped with a regular
curve in it by studying the singularities of height function on (G, B). There are two distinguished
regular curves, ΣG (the singular set) and B. Finally, we examine the duality of the two curves by
describing the versal deformation of the generic submersions that are obtained.

2. Preliminaries

Let K denote the real number R or the complex numbers C with local coordinates z. The set of all
smooth function germs from (Kn, 0) to K is denoted by En (or Ez), and the maximal ideal in this set is
denoted byMn. Let θn represent the module over En consisting of all vector fields formed on (Kn, 0).
Let K[z] be the polynomial ring or formal power series over K.

Let V ⊂ (Kn, 0) be an analytic variety. The ideal of germs that vanish on V is denoted by I(V).

Definition 1. If ξ(I(V)) ⊆ I(V), then a vector field ξ ∈ θn is considered to be tangent to V or to preserve
V. The module of vector fields of this nature is represented by Der(−logV).
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It is important to note that if ξ ∈ Der(−logV), then it can be integrated to generate a
diffeomorphism ϕ : (Kn, 0)→ (Kn, 0) that preserves V , i.e., ϕ(V) ⊆ V .

Also note that Definition (1) implies that if V = (h1, h2, . . . , hs), where hi ∈ Mn, then

Der(−logV) = {ξ ∈ θn : ∃ fi j ∈ En such that ξ(hi) =

s∑
i=1

fi jhi, j = 1, . . . , s}.

Definition 2. Let ζ be a vector field on (Kp) and f : (Kn, 0)→ (Kp) be a smooth map germ. Then, ζ is
said to be liftable over f if there exist a vector field η on (Kn) such that d f ◦ η = ζ ◦ f . In this case, η
is said to be lowerable.

The concepts of liftable and tangent vector fields on the discriminant are identical for stable map
germs when K = C (see [20]). In fact, Arnold, in [2], showed that there are liftable vector fields that
are not tangent vector fields when K = R .

Let V1 be an R−analytic variety in (Rr, 0) in local coordinates (u0, . . . , ur−1). Assume that V0 ⊆ V1

of codimension 1. Denote by Ṽ the pair consisting of V1 and a distinguished sub-variety V0 in it and
set Ṽ = (V1,V0). Thus, we may assume that the pair represents a variety equipped with a boundary.

Definition 3. A diffeomorphism φ : (Rr, 0)→ (Rr, 0) will be said to preserve Ṽ if and only if φ(V1) ⊆ V1

and φ(V0) ⊆ V0.

Definition 4. A vector field ξ ∈ θr is considered tangent to Ṽ if and only if the following conditions
are fulfilled.

(1) ξ (I(V1)) ⊆ I(V1),
(2) ξ (I(V0)) ⊆ I(V0).

The module of all vector fields satisfying the given conditions will be represented as Der(−logṼ) over
the Er-module, that is

Der(−logṼ) =

{
ξ =

r−1∑
i=0

u̇
∂

∂ui
∈ θr : ξg1 ∈ I(V1), ξg2 ∈ I(V0) ∀ g1 ∈ I(V1), g2 ∈ I(V0)

}
,

and it is commonly referred to as the stationary algebra of Ṽ.

Remark 1. If ξ belongs to Der(−logṼ) , then ζ conserves Ṽ and, as a result, is tangent to it.
Furthermore, Der(−logṼ) is the Lie algebra associated with the group of diffeomorphisms that preserve
(Ṽ , 0) in the space (Rn, 0).

3. Vector fields on quasi bifurcation diagrams

Consider the coordinate space Rn in local coordinates z = (x, y1, . . . , yn−1) equipped with a smooth
hypersurface Γ =

{
x = 0

}
, which is referred to as a boundary.

Recall from [12] that on the Γ, every simple function germ g can be stably transformed via the
quasi equivalence relation into one of the subsequent germs:

Bk : g1(x, y1) = ±xk ± y2
1, where k ≥ 2,
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or
Fp,k : g2(x, y1) = ±(x ± yp

1)2 ± yk
1, where k > p ≥ 2.

The tangent space to the quasi boundary equivalence singularity of g at g is

T QΓg =

{
∂g
∂x

(
xA +

n∑
i=1

∂g
∂zi

Bi

)
+

n−1∑
j=1

∂g
∂y j

E j : A, Bi, E j ∈ Ez

}
.

Let G(z, u) be a deformation of g : (Rn, 0) → (R, 0), where u = (u0, u1, . . . , ur−1) ∈ Rr are
parameters. Set Gu(z) = G(z, u); so that, G0 = g.

The initial speeds of G are defined by

Ġi =
∂G
∂ui

(z, 0), ∀ i ∈ {0, 1, 2, . . . , r − 1}.

The subsequent result is an adaptation of Theorem 3 from [16].

Proposition 1. A deformation G of a function g is considered versal in regard to the quasi equivalence
if and only if

T QΓg + R{Ġ0, . . . Ġr−1} = Ez.

Assume that the elements ω0, . . . , ωr−1 ∈ Ez form a basis of the quotient space Ez/T QΓg. Then,
Proposition 1 implies that a miniversal deformation of a function germ g may take the form:

G(z, u) = g(z) +

r−1∑
i=0

uiωi(z). (3.1)

Therefore, the formulas of quasi boundary versal deformations of g1 ∈ Bk and g2 ∈ Fp,k are

Gk(z, u) = ±y2
1 ± xk +

k−1∑
i=0

uixi

and

Gp,k(z, u) = ±
(
x ± yp

1 +

p+k−2∑
j=k−1

u jy
j−(k−1)
1

)2
± yk

1 +

k−2∑
i=0

uiyi
1,

respectively.

Remark 2. The versal deformation of the class F2,3 can be written equivalently as

G(x, y1, u) = ±x2 ± y3
1 + u0 + u1x + u2y + u3xy1.

Definition 5. [15] The quasi bifurcation diagram of a germ g with G(z, u) being its quasi versal
deformation, is the pairW(g) = (W1,W0), where

W1 = {u : G =
∂G
∂zi

= 0},

and
W0 = {u : G =

∂G
∂zi

= x = 0}.
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Note that W0 is contained in W1 and it satisfies the constraint x = 0. Thus, in particular, the
bifurcation diagrams of the classes Bk isW(Bk) = (W1,W0), where

W1 = {(u0, . . . , uk−1) : u0 = (±1 ∓ k)xk −

k−1∑
i=2

(i − 1)uixi, u1 = ∓kxk−1 −

k−1∑
j=2

ju jx j−1, x ∈ R},

and
W0 = {(u0, . . . , uk−1) : u0 = 0, u1 = 0},

On the other hand, the bifurcation diagram of the class F2,3 isW(F2,3) = (W1,W0), where

W1 = {(u0, u1, u2, u3) : u0 = ±x2 ± 2y3
1 + u3xy1, u1 = ∓2x − u2y1, u2 = ∓3y2

1 − u3x, x, y1, u3 ∈ R},

and
W0 = {(u0, u1, u2, u3) : u0 = ±2y3

1, u1 = −u2y1, u2 = ∓3y2
1, y1, u3 ∈ R}.

Theorem 3.1. The stationary algebra ofW(Bk), for k = 2, 3, 4, andW(F2,3) is described as follows.

(1) Der(−logW(B2)) is generated by

ξ1 = 0
∂

∂u0
+ (u0 − 4u2

1)
∂

∂u1
,

ξ2 = 2u0
∂

∂u0
+ u2

0
∂

∂u1
,

ξ3 = 2u1
∂

∂u0
+ u0u1

∂

∂u1
.

(2) Der(−logW(B3)) is generated by

ξ1 = 3u0
∂

∂u0
+ 2u1

∂

∂u1
+ u2

∂

∂u2
,

ξ2 = u0u1
∂

∂u0
+ 2u0u2

∂

∂u1
+ 3u0

∂

∂u2
,

ξ3 = 3u0u2
∂

∂u0
+ 18u0

∂

∂u1
+ (12u1 − 3u2

2)
∂

∂u2
,

ξ4 = (u2
1 − 3u0u2)

∂

∂u0
+ (3u1 − u2

2)
∂

∂u2
.

(3) Der(−logW(B4)) is generated by

ξ1 = 4u0
∂

∂u0
+ 3u1

∂

∂u1
+ 2u2

∂

∂u2
+ u3

∂

∂u3
,

ξ2 = u0u1
∂

∂u0
+ 2u0u2

∂

∂u1
+ 3u0u3

∂

∂u2
+ 4u3

∂

∂u3
,

ξ3 = 2u0u3
∂

∂u0
+ 24u0

∂

∂u1
+ (18u1 − 2u2u3)

∂

∂u2
+ (12u2 − 4u2

3)
∂

∂u3
,

ξ4 = 4u0u2
∂

∂u0
+ 18u0u3

∂

∂u1
+ (24u0 − 4u2

2 + 12u1u3)
∂

∂u2
+ (18u1 − 2u2u3)

∂

∂u3
,

ξ5 = (3u2
1 − 8u0u2)

∂

∂u0
+ (9u1u3 − 4u2

3)
∂

∂u2
+ (12u1 − 2u2u3)

∂

∂u3
.
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(4) Der(−logW(F2,3)) is generated by

ξ1 = 6u0
∂

∂u0
+ 3u1

∂

∂u1
+ 4u2

∂

∂u2
+ u3

∂

∂u3
,

ξ2 = (3u2
1 − u2u2

3)
∂

∂u0
+ (6u1 − u3

3)
∂

∂u1
+ 6u1u3

∂

∂u2
+ 6u3

∂

∂u3
,

ξ3 = (−16u1u2u3 + 6u0u2
3)

∂

∂u0
+ (−16u2u3 − 5u1u3

3)
∂

∂u1
+ (24u2

1 − 4u2u2
3)

∂

∂u2
+ (48u1 + u3

3)
∂

∂u3
,

ξ4 = (−16u1u2
2 − 18u0u2u3)

∂

∂u0
+ (−32u2

2 + 3u1u2u3 − 24u0u2
3)

∂

∂u1
+ (72u0u1 − 12u2

2u3)
∂

∂u2

+ (144u0 + u2u2
3)

∂

∂u3
,

ξ5 = (−64u2
2 + 48u1u2u3 − 18u0u2

3)
∂

∂u0
+ (−32u2u3 + 23u1u2

3)
∂

∂u1
+ (288u0 − 72u2

1 + 12u2u2
3)

∂

∂u2

+ 5u3
3
∂

∂u3
,

ξ6 = (9u3
1 − 8u2

2u3 + 3u1u2u2
3)

∂

∂u0
+ (72u0 − 2u2u2

3)
∂

∂u1
+ (36u0u3 + 9u2

1u3 + 3u2u3
3)

∂

∂u2

+ (8u2 − 6u1u3)
∂

∂u3
.

Proof. Let p1, p2 ∈ Er. Assume that p1 is the defining equation of W1 and p1, p2 are the defining
equations of W0. Let I(W1) be the ideal generated by p1 and I(W0) is the ideal generated by p1

and p2.

Let Θ(W1) be the module of all vector fields ξ =
r∑

i=1
ξi

∂
∂ui

on Rr such that ξ (I(W1)) ⊆ I(W1). To

find Θ(W1), we have to solve the equation

r∑
i=1

ξi
∂p1

∂ui
= qp1,

for ξi and q ∈ Er. Now consider the map φ : Er+1
r → R, given by

Φ(ξ, q) =

r∑
i=1

ξi
∂h1

∂ui
− qh1,

where ξ = (ξ1, . . . , ξr) ∈ Er
r and q ∈ E1

r . Let K = ker Φ and π : Er+1
r → Er

r be defined by π(ξ, q) = ξ.
Then Θ(W1) = K. Using the syzygies that are supplied in the Singular software package, we are able
to obtain the K.

Next, we are looking for the module Θ(W1) of all vector fields such that ξ (I(W0)) ⊆ I(W0).
This implies that, for each j = 1, 2, we have to solve

r∑
i=1

ξi
∂p j

∂ui
=

2∑
i=1

qi pi,
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for ξ =
r∑

i=1
ξi

∂
∂ui

and qi.

For j = 1, 2, let Φ j : Er+2
r → R be the map that is defined as

Φ j(ξ, q̃) =

r∑
i=1

ξi
∂p j

∂ui
−

2∑
i=1

qi pi,

where ξ = (ξ1, . . . , ξr) ∈ Er
r and q̃ = (q1, q2) ∈ E2

r . Let K j = ker Φ j. Set π : Er+2
r → Er

r be defined by
π(ξ, q̃) = ξ. Let S j = π(K j). Therefore,

Θ(W0) = S 1

⋂
S 2.

Again we use the syzygies to obtain the Ki. Finally, we have

Θ(W) = Θ(W1)
⋂

Θ(W0).

All of the vector fields ξ that are created by this approach can be verified to be liftable. This means
that there is a vector field η on Rr−1 that is such that dpi(η) = ξ ◦ pi, and as a result, they are tangent
toW. �

In (3.1), if we set ω0 = 1 and ωi ∈ Mz, then the space Rr−1 in the local coordinates u1, . . . , ur−1 is
known as the principle of a shortened quasi-boundary versal deformation of g.

Consider the projection map π : Rr → Rr−1, (u0, u1, . . . ur−1) 7→ (u1, . . . ur−1).

Definition 6. [15] The caustic of a a versal deformation of a function g with respect to the quasi
equivalence relation is a hypersurface in Rr−1 which is a union

Σ1 ∪ Σ0,

which will be denoted by Σ∗, where Σ10 = the π-image of the singular points ofW1 and Σ0 = π(W0).

Recall from [15] (applying Definition [6]) that the caustic of Bk is a union of two hypersurfaces
which are tangent to each other, the first one is the set

Σ1 = {(u1, . . . , uk−1 : u1 = ∓kxk−1 −

k−1∑
i=2

juixi−1, u2 = ∓
k(k − 1)

2
xk−2 −

k−1∑
j=3

j( j − 1)
2

u jx j−2 x ∈ R},

that is a cylindrical generalized swallow tail over a line. The second one of them is the submanifold of
the greatest dimension that crosses the edge of Σ0., in particular:

Σ0 = {u1, . . . , uk−1 : u1 = 0}.

Furthermore, the caustic of the class F2,3 is a union of the smooth surface

Σ1 = {(u1, u2, u3) : u1 = ∓2x −
u3

3

12
, u2 = ∓

3
144

u4
3 − u3x, x, u3 ∈ R},

and Whitney Umbrella

Σ0 = {(u1, u2, u3) : u1 = −u3y1, u2 = ∓3y2
1, y1, u3 ∈ R}.
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Theorem 3.2. The module Der(−log(Σ∗) is generated by the vector fields

(1) For the caustic of B3

ξ1 = 2u1
∂

∂u1
+ u2

∂

∂u2
,

ξ2 = 2u1u2
∂

∂u1
+ 3u1

∂

∂u2
.

(2) For the caustic of B4

ξ1 = 3u1
∂

∂u1
+ 2u2

∂

∂u2
+ u3

∂

∂u3
,

ξ2 = (−4u2
2 + 9u1u2)

∂

∂u2
+ (12u1 − 2u2u3)

∂

∂u2
,

ξ2 = (8u1 − 3u2u3)
∂

∂u2
+ (16u2 − 6u2

3)
∂

∂u2
.

(3) For the caustic of F2,3

ξ1 = (48u1 − 12u2u3)
∂

∂u1
+ (24u2 + 2u3

3)
∂

∂u2
+ 0

∂

∂u3
,

ξ2 = (6u2
2 − 2u1u2

3)
∂

∂u1
+ (−4u1u3 − 2u2u2

3)
∂

∂u2
+ 12u2

∂

∂u3
,

ξ3 = (12u2u3)
∂

∂u1
+ (12u2 − 2u3

3)
∂

∂u2
+ 12u3

∂

∂u3
,

ξ4 = (3u2
2u3 + u1u3

3)
∂

∂u1
+ (6u2

2 + 2u1u2
3)

∂

∂u2
+ 0

∂

∂u3
.

Proof. Assume that Θ(Σ1) and Θ(Σ0) are the modules of vector fields that are that are tangential to Σ1

and Σ0, respectively.
To determine Θ(Σi), i = 0, 1, we employ similar processes as those used in the proof of

Theorem 3.1 to determine Θ(W1).
Hence, we have,

Θ(Σ∗) = Θ(Σ1)
⋂

Θ(Σ0).

All such vector fields ξ ∈ Θ(Σ∗) are liftable and as a result, they are tangent to Σ∗. �

Next, we investigate whether or not W and Σ∗ are considered to be free divisors. Recall that a
hypersurface V = {h = 0} ⊂ (Kn, 0) with a reduced defining ideal I(V), is called free divisor, in the
sense of Saito, if Der(−logV) is a free En-module, necessarily, so its rank is equal to n. The following
criterion was established also by K. Saito and is now commonly referred to after him.

Proposition 2. [21][Saito’s Criterion] Let h ∈ K[z] be reduced. Then, h defines a free divisor if and
only if there exists n × n matrix H with entries in K[z] such that

det(H) = h and (∇h)H ≡ 0 mod(h).
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Here, ∇h =
(
∂h
∂z1
, . . . , ∂h

∂zn

)
and the last condition just expresses that each entry of the (row) vector (∇h)H

is divisible by h in K[z]. The columns of H can then be viewed as the coefficients of a basis, with
respect to the partial derivatives ∂

∂zi
, of the logarithmic vector fields along the divisor h = 0. The matrix

H is called a discriminant or Saito matrix of h.

The above discussion and Theorem 3.1 implies that the bifurcation diagrams of the classes Bk, k =

2, 3, 4 and class F2,3 are not free divisors due to the cardinality of a basis of Der(−logW(Bk)), and
Der(−logW(F2,3)), respectively. Moreover,

Proposition 3. The caustics of Bi, i = 3, 4 are free divisors.

Proof. The caustic of the B3 class is a union of the parabola 3u1−u2
2 = 0 and the line u1 = 0. Hence, the

defining equation of Σ∗ ⊂ R2 for B3 is h1 = u1(3u1 − u2
2). On the other hand, by similar consideration

we find that the defining equation of the caustic Σ∗ ⊂ R3 for the class B4 is h2 = u1(108u2
1 + 32u3

2 −

108u1u2u3 − 9u2
2u2

3 + 27u1u3
3). Applying Saito’s Criterion and Theorem 3.2, one can easily show that

the caustics of Bi, i = 3, 4 are free divisors. �

4. Geometric cuspidal edge with smooth boundary

Let G be a general cuspidal edge in R3 with local coordinates z = (u, v,w), having the following
parametrization at the origin as in [18]:

f : U ⊆ R2, 0→ R3,

(t, s) 7→
(
t, a(t) +

1
2

s2, b1(t) + s2b2(t) + s3b3(t, s)
)
,

where U is an open set in R2 and

a(t) =
1
2

a20t2 +
1
6

a30t3 +
1

24
a40t4 + O(5);

b1(t) =
1
2

b20t2 +
1
6

b30t3 +
1

24
b40t4 + O(5);

b2(t) =
1
2

b12t +
1
6

b22t2 +
1

24
b32t3 + O(4);

b3(t, s) =
1
6

b03 +
1
6

b13t +
1

24
b04s +

1
24

b23t2 +
1

24
b14ts +

1
120

b05s2 + O(3),

and ai j, bi j ∈ R. Let B ⊆ G be a distinguished smooth curve which is parametrized by:

γ1(t) = f (t, t) =
(
t, a(t) +

t2

2
, b1(t) + t2b2(t) + t3b3(t, t)

)
,

i.e., the image of the line s = t. The pair G̃ = (G, B) will be called a geometric cuspidal edge with a
smooth boundary. Note that G̃ is diffeomorphic toW(B3).

The set of critical points of G is {s = 0}, and hence the singular set of G is the curve:

γ0(t) = f (t, 0) = (t, a(t), b1(t)),
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which will be denoted by Σ.

Denote by
(
κΣ(0), κB(0)

)
and

(
τΣ(0), τB(0)

)
the pairs of the curvatures and torsions of the pair of

space curves (Σ, B), respectively.

Proposition 4. (1)
(
κΣ(0), κB(0)

)
=

(√
a2

20 + b2
20,

√
(a20 + 1)2 + b2

20
)
.

(2)
(
τΣ(0), τB(0)

)
=

(a20b30−b20a30
κ2

Σ
(0) , (a20+1)(b30+b03+3b12)−b20a30

κ2
B(0)

)
.

(3) The osculating planes of Σ and B at the origin are orthogonal to the vectors (0,−b20, a20) and
(0,−b20, a20 + 1), respectively.

Proof. The results are obtained via the standard rules of calculating curvature and torsion on
space curves. �

Note that the two curves Σ and B have a common tangent line, and hence the tangential direction,
which will be denoted by Td at 0, is parallel to the vector (1, 0, 0). Note that w = 0 is the plane that
represents the tangent cone Ld to G̃.

4.1. Functions on a cuspidal edge equipped with a smooth curve

Consider the pair ( f̃ , γ̃1) which consists of theA-normal form of a cuspidal edge:

f̃ : U ⊆ R2, 0→ R3,

(t, s) 7→
(
t,

1
2

(s2 − t2), s3 + t3 − 2ts2),
and the smooth curve γ̃1(t) = f̃ (t, t) = (t, 0, 0). Let V1 = f̃ (U ⊆ R2) and V0 = γ̃1(R). Then, the pair
V = (V1,V0) will be considered as a model of a cuspidal edge with a smooth curve, which serves as
a boundary. (See Figure 1).

Figure 1. A model of a cuspidaledge with a boundary (the blue line).

Recall that the bifurcation diagrams of the B3 class is the pairW = (W1,W0), whereW1 is the
cuspidal edge, which is parameterized by

(t, s) 7→ (t,−3s2 − 2ts,−2s3 − ts2),

and hence it is A-equivalent to f̃ , via the right change of coordinates t 7→ t, s 7→ s − 1
3 t, followed by

normalising the coefficients. Hence, the pairV is diffeomorphic toW .
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The defining equation ofV1 is

K(z) = w2 − v3 + 4uvw + u2v2 + 2u3w + u4v = 0,

while the defining equations ofV0 are K(z) = 0, v = 0 and w = 0.

Definition 7. We say that g1, g2 ∈ Ez are R(V)-equivalent whenever g2 = g1 ◦ Φ where
Φ : (R3, 0)→ (R3, 0) is diffeomorphism-germ and Φ preservesV, i.e., Φ(V1) ⊆ V1 and Φ(V0) ⊆ V0.

Define Θ(V) as the module over Ez of vector fields in R3 that is tangential toV and define

Θ0(V) = {ξ ∈ Θ(V) : ξ(0) = 0}.

Then, the tangent space and the expanded tangent space to the orbit of g at g are

LR(V).g =
{
ξ(g) : ξ ∈ Θ0(V)

}
,

and
LeR(V).g =

{
ξ(g) : ξ ∈ Θ(V)

}
,

respectively.

The R+
e -codimension of g is defined as d(g,R+

e (V)) = dimR (Mz/LeR(V).g).

Theorem 4.1. The Ez-module Θ(V) is generated by

ξ1 = u
∂

∂u
+ 2v

∂

∂v
+ 3w

∂

∂w
,

ξ2 = v
∂

∂u
− 2uv

∂

∂v
+ (u2v − 2v2)

∂

∂w
,

ξ3 = (3w − u3)
∂

∂u
− (6uw + 2u2v)

∂

∂v
− 6vw

∂

∂w
,

ξ4 = 7u2 ∂

∂u
+ (6w + 20uv)

∂

∂v
+ (9v2 − 12vu2)

∂

∂w
.

Proof. By following the same procedures as that to prove Theorem 3.1. �

Corollary 1. For g ∈ Ez, the tangent space to the orbit of g atg with respect to the R(V)-equivalence
relation is defined as

LR(V).g =
{
[uA1 + vA2 + (3u − u3)A3 + 7u2A4]

∂g
∂u

+ [2vA1 − 2uvA2

−(6uw+2u2v)A3 + (6w+20uv)A4]
∂g
∂v

+ [3wA1 + (u2v−2v2)A2−6vwA3 + (9v2−12vu2)A4]
∂g
∂w

: Ai ∈ Ez
}
.

We proceed to classify submersion-germs g : (R3, 0) → (R, 0). g from (R3, 0) to (R, 0) in
accordance with the R(V)-equivalence relation, where d(g,R+

e (V)) ≤ 2. The classification method
and prenormal forms are described in the following lemma and relies on Arnold’s spectral sequence.
At first, we go over several concepts from [22].
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Let us assume that we have a certain appropriate Newton diagram Γ that is a subset of the
non-negative integers Zn

≥0. Each face Γi of Γ corresponds to a specific quasihomogeneity type
αi = (αi1, αi2, . . . , αin). In this type, the monomials xk = xk1

1 xk2
2 . . . xkn

n with exponents lying on Γi

have a degree of one, meaning that 〈k,αi〉 = αi1k1 + · · · + αinkn = 1.
A monomial, denoted as xk, is considered to have a Newton degree of d if d is the minimum value

obtained from the inner product of k and α j. The monomials of Newton degree d are precisely those
whose exponents are contained in the diagram dΓ, which is created by scaling Γ by a factor of d.

The smallest of the Newton degrees of the monomials that appear in a power series is known as
the Newton order d. An ideal S j in the ring Ex is formed by the series of order at least d. The Newton
filtration in Ex is generated by the ideals S j. More precisely, S0 = Ex, and Sk ⊆ Sl whenever k > l.

The principal part of a power series g of order d is the sum of the terms of Newton degree d.
Let g ∈ Ez. We may decompose g into its principal portion g0 of Newton degree being N and

greater order elements g̃ as g = g0 + g̃. It is assumed that the R+
e -codimension of g0 is finite, meaning

that d(g0,R
+
e (V)) < ∞. The subsequent result is a rendition of Lemma 8.1 in [12] and Lemma 2.10

in [13].

Lemma 1. Consider a monomial basis of the linear space Ez/LR(V).g0 and let ρ1(z), ρ2(z), . . . , ρs(z)
be the subset of generators that have Newton degrees greater than N.

Assume that for every ω ∈ Sβ \ S>β, β > N:

(1) There is a vector field ξ = u̇ ∂
∂u + v̇ ∂

∂v + ẇ ∂
∂w ∈ Θ(V) , such that

ω =
∂g0

∂u
u̇ +

∂g0

∂v
v̇ +

∂g0

∂w
ẇ + ω̂ +

s∑
i=1

ciρi(z),

where ω̂ ∈ S>β and ci ∈ R.

(2) Furthermore, given any δ, if N < δ < β, and for every ψ ∈ Sδ, the following statement

E(ψ,ω) =
∂ψ

∂u
u̇ +

∂ψ

∂v
v̇ +

∂ψ

∂w
ẇ,

belongs to Sβ.

Then any germ g = g0 + g̃ is R(V)-equivalent to a germ g0 +
s∑

i=1
diρi, where di ∈ R.

Remark 3. By eliminating the prerequisite that g0 has a finite codimension, the proof of Lemma 1
demonstrates that any function g = g0 + g̃ is R(V)-equivalent to a comparable form:

g0 +
∑

diρi + Λ,

where Λ is a member of a relatively large power of the maximal ideal.

Definition 8. The families of germs of functions H1,H2 :
(
R3 × Rl, (0, 0)

)
→ (R, 0) are referred to as

P-R+(V).-equivalent if
H2(z, u) = H1 ◦ Φ(z, u) + C(u),

where Φ :
(
R3×Rl, (0, 0)

)
→

(
R3×Rl, (0, 0)

)
is a germ of diffeomorphism with Φ(z, u) = (ϕ(z, u), χ(u)),

and C : (Rl, 0)→ R is a function germ.
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Consider G(z, u) as a deformation of g ∈ Ez.Then, G is referred to as versal with regard to the
R+(V)-equivalence relation if, for whatever other form of deformation H of g, there exists a map germ
Φ(z, u) (which may not necessarily be a diffeomorphism) and C as described above, satisfying

H(z, u) = G ◦ Φ(z, u) + C(u).

Proposition 5. A deformation G of g onV is R+(V)-versal provided

LR(X̃).g + R{1, Ġ1, . . . Ġl} = Ez,

where Ġi are the initial speeds of G.

The result that follows is a description of the classification of germs of submersions in accordance
with the R(V)-equivalence relation.

Theorem 4.2. Let V be a pair consisting of the cuspidal edge V1, which is represented by the
parametrization f̃ (t, s) =

(
t, 1

2 (s2 − t2), s3 + t3 − 2ts2), and a distinguished smooth curve V0 within
it, represented by the parametrization γ̃(t)1 = f̃ (t, t) = (t, 0, 0). Then, any function germ g at 0 that has
a R+(V)-codimension of not more than 2 (with moduli) is equivalent to a function germ mentioned in
the Table 1.

Table 1. Submersion germs inMz of R+(V)-codimension ≤ 2.

Equivalent Germ Constraints d(g,R+(V)) mini-versal unfolding
±u – 0 ±u

±v + εu2,1 ε , 0,±1 1 ±v + εu2 + λ1u
±v + εu3,1 ε , 0 2 ±v + εu3 + λ1u + λ2u2

±w + εu2,1 ε , 0 2 ±w + εu2 + λ1u + λ2v

*Note: The symbol ε represents a modulus, while the codimension refers to the dimension of the stratum.

Proof. The linear transformations of coordinates derived via the integration of the 1-jets of the vector
fields in Θ(V) are:

ϕ1(z) = (ec1u, e2c1v, e3c1w);
ϕ2(z) = (u + c2v, v,w);
ϕ3(z) = (u + c3w, v,w);
ϕ3(z) = (u, v + c4w,w);

where ci ∈ R.
Let g be decomposed into its 1-jet g0 = au + bv + cw, where a, b, c ∈ R and g̃ ∈ M2

z . Using ϕi, one
can show that the orbits of the space of 1-jets are ±u, ±v, and ±w.

The subsequent conclusions may be established by applying Lemma 1 and Remark 3.
Let g0 = ±u. Then, the tangent space to the orbit of g0 at g0 is

LR(V).g0 =
{
uA1 + vA2 + (3w − u3)A3 + 7u2A4 : Ai ∈ Ez

}
.
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Clearly, we have mod LR(V).g0: u ≡ 0, v ≡ 0 and w ≡ 0. Hence, Lemma 3 implies that g is R(V)-
equivalent to its principal part g0 = ±u.

Next, consider the principal part g0 = ±v. Then,

LR(V).g0 =
{
2vA1 − 3uvA2 − (6uw + vu2)A3 + (6w + 20uv)A4 : Ai ∈ Ez

}
.

Therefore, we have mod LR(V).g0: v ≡ 0 and w ≡ 0. It follows that

Ez/LR(V).g0 '
{
q(u) : q ∈ Eu

}
.

Using Remark 3 and taking into account the constraints on g̃, the germ g is reduced to the form h =

±v + h̃(u), where h̃ ∈ M2
u. Let h̃ = d2u2 + d3u3 + . . . , di ∈ R. If d2 , 0, then h is R(V)-equivalent

to the germ ±v + εu2, where 0,±1 , ε ∈ R (modulus) and its mini-versal deformation may be taken
as ±v ± u2 + λ1u. Next, if d2 = 0 but d3 , 0, then h is R(V)-equivalent to the germ ±v + εu3, where
0 , ε ∈ R (modulus) and its mini-versal deformation may be taken as ±v + εu3 + λ1u + λ2u2.

Finally, consider the 1-jet g0 = ±w. Then,

LR(V).g0 =
{
3wA1 + (u2v − 2v2)A2 − 6vwA3 + (9v2 − 12vu2)A4 : Ai ∈ Ez

}
.

Therefore, we have mod LR(V).g0:
w ≡ 0, (4.1)

u2v − 2v2 ≡ 0, (4.2)

and
9v2 − 12vu2 ≡ 0. (4.3)

Clearly, relations (4.2) and (4.3) are linearly independent. Hence, v2 ≡ 0 and vu2 ≡ 0. Consequently

Ez/LR(V).g0 '
{
a1v + a2uv + q(u) : q ∈ Eu, ai ∈ R

}
.

Using Remark 3 and taking into account the constraints on g̃, the germ g is reduced to the form h =

±w + a2uv + h̃(u), where h̃ ∈ M2
u. If h̃ contains d̃3u2, where 0 , d̃3 ∈ R, then h is equivalent to

±w + εu2, 0 , ε ∈ R (modulus) and its mini-versal deformation may be taken as ±w + εu2 + λ1u + λ2v.
If d̃3 = 0, then in the most degenerate case h has codimension greater than 2. The proof of the theorem
is now complete. �

4.2. The discriminants of the deformations

Let F : (R3 × R2, 0) → R; (z, λ) 7→ F(z, λ) be a deformation of a germ h(z) on V and consider
the family P(s, t, λ) = F( f̃ (t, s), λ), where f̃ (s, t) =

(
t, 1

2 (s2 − t2), s3 + t3 − 2ts2). Then, we define the
following types of discriminants:

(1) The discriminant of the family P, everywhere:

D1 = {(λ, P) :
∂P
∂t

=
∂P
∂s

= 0 at (t, s, λ)},
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(2) The discriminant of P, restricted to Σ:

D2 = {(λ, P) :
∂P
∂t

= 0 at (t, 0, λ)},

and
(3) The discriminant of P, restricted to the boundaryV0:

D3 = {(λ, P) :
∂P
∂t

= 0 at (t, t, λ)}.

We shall calculate Di, i = 1, 2, 3 for the mini-versal deformations F(z, λ) of the submersions
g(z) = F(z, 0) in Table 1.

(1) g(z) = u. We have F(z, λ) = u, and hence P = t. Note that the fiber g = 0 is transverse for both Td

and Ld. Clearly, Di, i = 1, 2, are all empty sets.
(2) g(z) = ±v + εuk, k = 2, 3. Note that the tangent plane to the fiber g = 0 contains Td but is

transverse Ld.

• For k = 2, we have F(z, λ) = ±v + εu2 + λ1u, and hence P = ±(s2 − t2) + εt2 + λ1t. The D1 set
is a smooth surface which is parametrized by

(t, λ2) 7→
(
2(±1 − ε)t, λ2, (±1 − ε)t2).

TheD2 set coincides withD1. On the other hand, on the boundary we have P = F( f̃ (t, t), λ) =

εt2 + λ1t. Therefore, the D3 set is also a smooth surface which is parametrized by:

(t, λ2) 7→
(
− 2εt, λ2,−εt2).

Note that D1 = D2 and D3 are tangent along the λ2-axis.
• For k = 3, we have F(z, λ) = ±v + εu3 + λ1u + λ2u2. The D1 and D2 sets are coinciding

cuspidal edge, which are parameterized by:

(t, λ2) 7→
(
− 3εt2 − 2(λ2 ∓ 1)t, λ2, (±1 − λ2)t2 − 2εt3).

The D3 set is also cuspidal edge, that is parametrized by:

(t, λ2) 7→
(
− 3εt2 − 2λ2t, λ2,−λ2t2 − 2εt3).

Note that D1 = D2 intersects D3 along a curve.

(3) g = ±w + εu2. We have F = ±w + εu2 + λ2u + λ2v. We may consider the versal deformation:

F(z, λ) = ±w + εu2 + λ1u + λ2v.

The tangent plane to g = 0 includes both Td and Ld in this scenario. Now, we have

P = ±(s3 + t3 − 2ts2) + εt2 + λ1t + λ2(s2 − t2).
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Note that ∂P
∂s = 0 if and only if s = 0 or λ2 = 3

2 s − 2t. Moreover, ∂P
∂t = 0 if and only if

λ1 = 2s2 ∓ 3t2 − 2(ε + λ2)t. Hence, the D1 set consists of two components, the first one is a
cuspidal edge which is parametrized by

(t, λ2) 7→ (∓3t2 − 2(ε + λ2)t, λ2,∓2t3 − (ε + λ2)t2),

and the second one is a smooth surface which is parametrized by

(t, s) 7→ (λ1, λ2, (−
3
2
± 1)s3 + (∓2 − 6)t3 − εt2 + 2ts2 −

3
2

st2),

where λ1 = ±2s2 + (∓3 − 4)t2 − (2ε + 3s)t and λ2 = 3
2 s − 2t. The D2 set coincides with the first

part of D1. The D3 is a regular surface that may be described by a parametrization

(t, λ2) 7→ (−2εt, λ2,−εt2).

We condense the above calculation in the following.

Proposition 6. (1) The discriminants D1, D2 and D3 of the singularity g = u are empty sets.
(2) The discriminants D1 and D2 of the singularity g = ±v + εu2 are coincident smooth surface, and

the D3 is also a smooth surface that is tangent to D1 along a curve (Figures 2 and 3).
(3) The discriminants D1 and D2 of the singularity g = ±v + εu3 are coincident cuspidal edges, and

the D3 is a different cuspidal edge that is tangent to D1 along a curve (Figure 4).
(4) The discriminants D1 of the singularity g = ±w + εu2 is a combination of two components: a

cuspidal edge and a regular surface (Figure 5). The D2 is a cuspidal edge and coincides with one
of the components of the D1. The D3 is a smooth surface (Figure 6).

Figure 2. The discriminants D1 = D2 and D3 of the singularity g = v + εu2.

Figure 3. The discriminants D1 = D2 and D3 of the singularity g = −v + εu2.
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Figure 4. The discriminants D1 = D2 and D3 of the singularity g = ±v + εu2.

Figure 5. The D1 and D2 sets of the singularity g = ±w + εu3.

Figure 6. The D3 set of the singularity g = ±w + εu2 .
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4.3. The height functions on a geometric cuspidal edge with a smooth curve

Let H : G̃ × S 2 → R,H((t, s), η) = Hη(t, s) = f (t, s) · η, be a family of height functions on G̃,
where S 2 is the 2-sphere and η = (η1, η2, η3) ∈ R3. Then, Hη measures the contact of G̃ with the plane
πp which is orthogonal to the vector η at the point p ∈ G̃. Generically, the submersions g, which are
obtained in Theorem 4.2, describe explicitly such contact. The contact between the fiber g = 0 and the
modelV is equivalent to the contact between G̃ and πp.

We discuss the contact of πp with G̃ along Σ and B at the origin.
Note that the restriction of Hη along Σ and B are

Hη(t, 0) = tη1 +
1
2

(a20η2 + b20η3)t2 +
1
6

(a30η2 + b30η3)t3 + O(4),

and
Hη(t, t) = tη1 +

1
2

[(a20 + 1)η2 + b20η3]t2 +
1
6

[a30η2 + (b30 + 3b12 + b03)η3]t3 + O(4),

respectively.
Clearly, Hη is singular when η1 = 0. Further, the contact of G̃ with πp is measured by the zero of

g = u withV at the origin when πp is transverse to Td. The following is a description of the remaining
cases in which πp is a part of the pencil family of planes that is not transverse to Td:

Theorem 4.3. If πp is not the tangential cone to G̃, then the contact of πp with G̃ is equivalent to that
of the zero of g = ±v + εuk (where k = 2, 3 and ε , 0,±1) with the representationV. Moreover,

(1) the plane πp has an A1-contact with Σ and B if and only if πp is not the osculating of neither Σ

nor B.
(2) πp has an A1-contact with Σ and an A2-contact with B if and only if and only if πp is not the

osculating of Σ but πp coincides with the osculating plane of B and τB(0) , 0.

Proof. Among the submersions listed in Theorem 4.2, the tangent plane to the zero fiber of g = ±v+εuk,

(where k = 2, 3), contains Td and is transverse to the tangent cone of G̃. As a result, the contact of πp

with G̃ is equivalent to that of g = 0 with the representationV.

(1) Let k = 2. Then, the contact of the tangential line along Σ of and B is measured by the type of

g( f̃ (t, 0)) = (∓1 + ε)t2,

and
g( f̃ (t, t) = εt2,

respectively. So, it is of type A1 along the two curves. Now, consider the restrictions Hη(t, 0)
and Hη(t, t) on Σ and B, respectively. Then, the plane πp has an A1-contact with Σ0 if and only
if η2a20 + η3b20 , 0, which implies that (η2, η3) , (−b20, a20). On the other hand, πp has an A1-
contact with B if and only if η2(a20 + 1) + η3b20 , 0, which implies that (η2, η3) , (−b20, a20 + 1).
Geometrically, this means that πp is not the osculating plane of neither Σ nor B at p.

(2) Let k = 3. Then, the contact of the tangential line along Σ and B is measured by the type of

g( f̃ (t, 0)) = ∓t2 + εt3,
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and
g( f̃ (t, t)) = εt3,

respectively. So, it is of type A1 along Σ and of type A2 along B. Now, consider the restriction
Hη(t, t) along B. Then, the plane πp has an A2-contact with B if and only if

(a20 + 1)η2 + b20η3 = 0, (4.4)

and
a20η2 + (b30 + 3b12 + b03)η3 , 0. (4.5)

The constraint (4.4) implies that (η2, η3) = (−b20, a20 + 1), which means that πp is the osculating
plane of B. On the other hand, the constraint (4.5) becomes

− a20b20 + (b30 + 3b12 + b03)(a20 + 1) , 0, (4.6)

which implies that τB(0) , 0.

�

Theorem 4.4. If πp is the tangent cone to G̃, then the contact of πp at G̃ is equivalent to that of the
zero fiber of g = ±w + εu2 (ε , 0,±1) with the representation V. Furthermore, the plane πp has an
A1-contact with both Σ and B, and it is not the osculating of neither Σ nor B.

Proof. The tangent to the zero of g = ±w + εu2, (ε , 0,±1), is the same as the tangent cone of G̃ for
the submersions shown in Theorem 1. Hence, the contact of πp with G̃ is the same as that of g = 0 with
the modelV. Note here that η = (0, 0, 1). On the other hand, the contact of the tangential line along Σ

and B is measured by the singularity of

g( f̃ (t, 0)) = ±t2 + εt2,

and
g( f̃ (t, t)) = εt2,

respectively, where ε , 0. ± 1. So, it is of type A1. The corresponding height function restricted to Σ

and B has an A1 singularity if and only if η3b20 , 0, which means that b20 , 0, and hence does not
coincide with the osculating plane of both Σ and B. �

4.4. The dual of a geometric cuspidal edge with a smooth curve

The discriminants may be used for the examination of the dual of the cuspidal edge equipped with
a smooth curve as explained below.

As pointed out in [23], an oriented plane in R3 in local coordinates z = (u, v,w) is characterized
by a unit vector η and a real number c. The equation of the plane can be expressed as z · η = c, where ·
represents the scalar product. It is important to observe that the pairs (η, c) and (−η,−c) represent the
same plane, but with opposing orientations. A unit space curve γ(t) can be associated with an oriented
tangent plane at t0 ∈ I ⊂ R by a unit vector η that is perpendicular to the tangent vector T (t) of γ(t) at
t0. The equation of the tangent plane is given by z · η = γ(t0) · η. The collection of all oriented tangent
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planes to the curve γ(t) is referred to as “the dual” of γ(t). Consequently, it is associated with the set
defined as follows:

{(η, c) ∈ S 2 × R : c = γ(t) · η, T (t) · η = 0}.

Define the following families:

D1(H) = {
(
η,Hη(t, s)

)
∈ S 2 × R :

∂H
∂t

=
∂H
∂s

= 0 at (t, s, η)},

D2(H) = {
(
η,Hη(t, 0)

)
∈ S 2 × R :

∂H
∂t

= 0 at (t, 0, η)},

and

D3(H) = {
(
η,Hη(t, t)

)
∈ S 2 × R :

∂H
∂t

= 0 at (t, t, η)}.

Then, in accordance with [23], if the contact of G̃ with πη is characterized by that of the fiber
g = 0 with V, where g is defined in Theorem (Classification of germs of submersions), then Di(H) is
diffeomorphic to Di(F), where F is a R+(V)-versal unfolding of g with 2-parameters. Therefore, we
have the following:

Proposition 7. Let G̃ be a pair of a geometric cuspidal edge G in R3 equipped with a smooth B in
it. Then, the calculations and figures in Section 4.2 give the models, up to diffeomorphisms, of Di(H),
i = 1, 2, 3.

The above result implies that if πp is tangent to Td but it is transverse Ld, then D1(H) = D2(H) and
D3(H) describe locally the dual of the curve Σ and B, respectively. On the other hand, if πp coincides
with Ld and it is tangent to Td, then D1(H) composed of two parts: one is D2(H) which is the dual of Σ)
and the second is the proper dual of G away from points of Σ, whereas the set D3(H) describes locally
the dual of the curve B.

5. Conclusions

In this paper, we calculated the generators of the vector fields that are tangent to the bifurcation
diagrams and caustics of the classes Bk, k = 2, 3, 4 and F2,3 with respect to the quasi equivalence which
is a non-standard equivalence relation. Consequently, we considered for application the generators of
the B3-class in which case the bifurcation diagram consists of two components: a cuspidal edge in
R3 and a smooth curve in it, which serves as a boundary and denoted it by V = (V1,V0). Then, we
classified the submersion on V with codimension less or equal 2. This model and classifications were
used to study the geometry of the pair G̃ = (G, B) of the geometric cuspidal edge G equipped with
a distinguished curve B in it. Apart from the standard structure, G̃ contains two curves: the singular
pints (the ridge) Σ and the smooth curve B. Thus, we discussed and described the contact of G̃ with the
plane πp at p ∈ G̃ along the curves Σ and B via the height function on G̃, using the zero fibers of the
submesrion obtained on V . In particular, we distinguished two cases. First, if πp is the tangent cone
to G̃, then the contact is of type A1 along both Σ and B if and only if πp is not the osculating plane of
neither Σ nor B, and of type A1 along Σ and A2 along B if and only if πp is not the osculating plane of
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Σ but it coincides with the osculating plane of B and τB(0) , 0 (the torsion of B at 0). Second, if πp is
not the tangent cone to G̃, then the contact is of type A2 along both Σ and B if and only if πp is not the
osculating plane of neither Σ nor B.

Subsequent study extending beyond this work may involve examining the height function on other
singular hypersurfaces in R3 characterized by a smooth or singular boundary. When the hypersurface
is equipped with a distinguished singular curve, it is more intriguing as it may involve two transversal
tangential directions, such as the situation of the cuspidal edge with a singular curve (cusp) in it.
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