We established a new conjugate gradient method with an efficient restart direction for solving large scale unconstrained optimization problems. The modified method was proposed under the Polak-Ribière-Polyak conjugate gradient method. Under the strong Wolfe line search, the search direction of the new method was sufficiently descent and its global convergence property could be proved. Compared with other methods having good numerical performances, numerical experiments and image restorations showed that the modified method was more effective.
Citation: Yixin Li, Chunguang Li, Wei Yang, Wensheng Zhang. A new conjugate gradient method with a restart direction and its application in image restoration[J]. AIMS Mathematics, 2023, 8(12): 28791-28807. doi: 10.3934/math.20231475
We established a new conjugate gradient method with an efficient restart direction for solving large scale unconstrained optimization problems. The modified method was proposed under the Polak-Ribière-Polyak conjugate gradient method. Under the strong Wolfe line search, the search direction of the new method was sufficiently descent and its global convergence property could be proved. Compared with other methods having good numerical performances, numerical experiments and image restorations showed that the modified method was more effective.
[1] | M. R. Hestenes, E. L. Steifel, Method of conjugate gradients for solving linear systems, J. Res. Nat. Standard., 49 (1952), 409–436. https://dx.doi.org/10.6028/jres.049.044 doi: 10.6028/jres.049.044 |
[2] | E. Polak, G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Rev. Fr. Informat Rech. Operationelle 3e Annee., 16 (1969), 35–43. Available from: https://www.esaim-m2an.org/articles/m2an/pdf/1969/01/m2an196903R100351.pdf |
[3] | B. T. Polyak, The conjugate gradient method in extremal problems, UssR Comput. Math. Math. Phys., 9 (1969), 94–112. https://dx.doi.org/10.1016/0041-5553(69)90035-4 doi: 10.1016/0041-5553(69)90035-4 |
[4] | R. Fletcher, C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), 149–154. https://doi.org/10.1093/comjnl/7.2.149 doi: 10.1093/comjnl/7.2.149 |
[5] | Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, part1: theory., J. Optim. Theory. Appl., 69 (1991), 129–137. https://doi.org/10.1007/BF00940464 doi: 10.1007/BF00940464 |
[6] | Y. H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177–182. https://doi.org/10.1137/s1052623497318992 doi: 10.1137/s1052623497318992 |
[7] | Z. X. Wei, S. W. Yao, L. Y. Liu, The convergence properties of some new conjugate gradient methods, Appl. Math. Comput., 183 (2006), 1341–1350. https://doi.org/10.1016/j.amc.2006.05.150 doi: 10.1016/j.amc.2006.05.150 |
[8] | Z. F. Dai, F. H. Wen, Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property, Appl. Math. Comput., 218 (2012), 7421–7430. https://doi.org/10.1016/j.amc.2011.12.091 doi: 10.1016/j.amc.2011.12.091 |
[9] | P. Wolfe, Convergence conditions for ascent methods, Siam Rev., 11 (1969), 226–235. https://doi.org/10.1137/1011036 doi: 10.1137/1011036 |
[10] | P. Wolfe, Convergence conditions for ascent methods II: Some Corrections, Siam Rev., 13 (1971), 185–188. https://doi.org/10.1137/1013035 doi: 10.1137/1013035 |
[11] | Z. Zhu, D. Zhang, S. Wang, Two modified DY conjugate gradient methods for unconstrained optimization problems, Appl. Math. Comput., 373 (2020), 125004. https://doi.org/10.1016/j.amc.2019.125004 doi: 10.1016/j.amc.2019.125004 |
[12] | L. Pengjie, W. Yanqiang, S. Feng, Z. Yan, S. Hu, Two extended HS-type conjugate gradient methods with restart directions, Acta Math. Sci., 43 (2023), 570–580. Available from: http://121.43.60.238/sxwlxbA/EN/Y2023/V43/I2/570 |
[13] | Y. H. Dai, C. X. Kou, A modified self-Scaling memoryless Broyden-Fletcher-Goldfarb-Shanno method for unconstrained optimization, J. Optim. Theory. Appl., 165 (2015), 209–224. https://doi.org/10.1007/s10957-014-0528-4 doi: 10.1007/s10957-014-0528-4 |
[14] | J. C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim., 2 (1992), 21–42. https://doi.org/10.1137/0802003 doi: 10.1137/0802003 |
[15] | G. Zoutendijk, Nonlinear programming computational methods, in: J. Abadie (Ed.), Integer nonlin. Program., (1970), 37–86. |
[16] | N. Andrei, Hybrid conjugate gradient algorithm for unconstrained optimization, J. Optim. Theory Appl., 141 (2009), 249–264. https://doi.org/10.1007/s10957-008-9505-0 doi: 10.1007/s10957-008-9505-0 |
[17] | N. Gould, D. Orban, P. L. Toint, CUTEr and SifDec: A constrained and unconstrained testing environment, ACM Trans. Math. Softw., 29 (2003), 373–394. https://doi.org/10.1145/962437.962439 doi: 10.1145/962437.962439 |
[18] | J. J. More, B. S. Garbow, K. E. Hillstrom, Testing unconstrained optimization software, ACM T. Math. Softw., 7 (1981), 17–41. https://doi.org/10.1145/355934.355936 doi: 10.1145/355934.355936 |
[19] | N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10 (2008), 147–161. |
[20] | E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., Ser. A., 91 (2002), 201–213. https://doi.org/10.48550/arXiv.cs/0102001 doi: 10.48550/arXiv.cs/0102001 |
[21] | W. W. Hager, H. C. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, Siam J. Optim., 16 (2005), 170–192. https://doi.org/10.1137/030601880 doi: 10.1137/030601880 |
[22] | Y. H. Dai, C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, Siam J. Optim., 23 (2013), 296–320. https://doi.org/10.1137/100813026 doi: 10.1137/100813026 |
[23] | R. H. Chan, C. W. Ho, M. Nikolova, Salt-and-pepper noise removal by median-type noise detectorsand detail-preserving regularization, IEEE Trans. Image Process., 14 (2005), 1479–1485. https://doi.org/10.1109/TIP.2005.852196 doi: 10.1109/TIP.2005.852196 |
[24] | X. Z. Jiang, W. Liao, J. H. Yin, J. Jian, A new family of hybrid three-term conjugate gradient methods with applications in image restoration, Numer. Algorithms, 91 (2022), 161–191. https://doi.org/10.1007/s11075-022-01258-2 doi: 10.1007/s11075-022-01258-2 |
[25] | A. C. Bovik, Handbook of image and video processing, Academic press, 2000. https://dl.acm.org/doi/book/10.5555/556230 |