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1. Introduction

The conjugate gradient method is an efficient method for solving the large scale nonlinear
unconstrained optimization problem

min { f (x) | x ∈ Rn} , (1.1)

where f : Rn → R is a continuously differentiable function and the gradient of f at x is denoted by g(x)
for x ∈ Rn. The iteration formulas of the conjugate gradient methods are obtained by

xk+1 = xk + αkdk, k ≥ 0, (1.2)

dk =

{
−gk, k = 0,
−gk + βkdk−1, k ≥ 1.

(1.3)

Starting from an initial guess, x0 ∈ Rn, αk > 0 is a step-length that was obtained by some line
searches, and dk is the descent direction. βk is the conjugate parameter, and different βk lead to
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different conjugate methods (CGMs). The classical and famous CGMs include the Hestenes-Stiefel
(HS) method [1], Polak-Ribière-Polyak (PRP) method [2, 3], Fletcher-Reeves (FR) method [4], Liu-
Storey (LS) method [5] and Dai-Yuan (DY) method [6]. Their conjugate parameters βk are specified as
follows:

βHS
k =

gT
k (gk − gk−1)

dT
k−1 (gk − gk−1)

,

βPRP
k =

gT
k (gk − gk−1)

∥gk−1∥
2 ,

βFR
k =

∥gk∥
2

∥gk−1∥
2 ,

βLS
k =

gT
k (gk − gk−1)

−gT
k−1dk−1

,

βDY
k =

∥gk∥
2

dT
k−1 (gk − gk−1)

.

HS, PRP, FR, LS and DY are equivalent when the objective function is a strictly convex quadratic
function and are under the exact line search. However, they have large differences whenever they use
inexact line search and the objective function is a general non-convex function. Usually, PRP, HS and
LS have good numerical performances because they have an approximate restart feature when jamming
occurs, but the above three methods may not satisfy the convergence property. On the contrary, the
numerators of βFR

k and βDY
k are positive, so FR and DY have good convergence properties under mild

conditions, while, their numerical performances are not so good.
In the past decades, many outstanding experts have proposed some efficient CGMs that combine

the advantages of PRP and FR methods. Undoubtedly, the proposed methods have good numerical
performances and convergence properties.

In 2006, Wei, Yao and Liu [7] gave a modified PRP method which we call the WYL method. The
βk in this method is written as:

βWYL
k =

gT
k

(
gk −

∥gk∥

∥gk−1∥
gk−1

)
∥gk−1∥

2 ,

and the WYL method inherits the advantages of the PRP method, which has good numerical and
theoretical properties.

A modified WYL method is given by Dai et al. [8] and it is called the DPRP method, which is
designed by

βDPRP
k =

∥gk∥
2
−
∥gk∥

∥gk−1∥

∣∣∣gT
k gk−1

∣∣∣
∥gk−1∥

2 + µ
∣∣∣gT

k dk−1

∣∣∣ ,
where µ > 1. The DRPR method satisfies the sufficient descent property independent of any line
search, and it is globally convergent under the standard Wolfe line search [9, 10].

Zhu et al. [11] relied on the restart conditions to come up with two conjugate gradient methods
(DDY1,DDY2). The conjugate parameters of the DDY1 and DDY2 methods are written as β1

k and β2
k ,
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respectively,

β1
k =


gT

k

gk−
µ1(gT

k dk−1)2

∥gk∥∥gk−1∥∥dk−1∥
2 gk−1


dT

k−1(gk−gk−1) , gT
k gk−1 ≥ 0,

gT
k

gk+
µ1(gT

k dk−1)2

∥gk∥∥gk−1∥∥dk−1∥
2 gk−1


dT

k−1(gk−gk−1) , gT
k gk−1 < 0,

β2
k =


gT

k

(
gk−

gT
k dk−1

∥dk−1∥
2 dk−1

)
dT

k−1(gk−gk−1)+µ2gT
k dk−1
, gT

k dk−1 ≥ 0,

0, gT
k dk−1 < 0,

the DDY1 and DDY2 methods are sufficiently descent under the standard Wolfe line search when the
parameters satisfy µ1 ∈ [0, 1], µ2 > 0.

In 2023, Liu at el. [12] based on [11, 13] gave two modified HS methods (EHS-RD1, EHS-RD2),
the descent direction of the EHS-RD1 is given by:

dk =


−gk, (k = 0),
−gk + β

EHS 1
k dk−1, (k ≥ 1) if g⊤k (gk − gk−1) ≥ 0,

−gk + ξ1
g⊤k gk−1

∥gk−1∥
2 gk−1, (k ≥ 1) if g⊤k (gk − gk−1) < 0,

where βEHS 1
k =

∥gk∥
2−µ1

∥gk∥
||gk−gk−1 ||

g⊤k (gk−gk−1)

d⊤k−1(gk−gk−1) and µ1 ∈ [0, 1], ξ1 ∈ [0, 1).
The descent direction of the EHS-RD2 is given by:

dk =


−gk, (k = 0),
−gk + β

EHS 2
k dk−1, (k ≥ 1) if g⊤k dk−1 ≥ 0,

−gk + ξ2
g⊤k dk−1

∥dk−1∥
2 dk−1, (k ≥ 1) if g⊤k dk−1 < 0,

where βEHS 2
k =

∥gk∥
2−

(g⊤k (gk−gk−1))2

∥gk−gk−1∥
2

d⊤k−1yk−1+µ2g⊤k dk−1
and µ2 > 0, ξ2 ∈ [0, 1).

The conjugate gradient methods EHS-RD1 and EHS-RD2 all have good numerical performances
under the standard Wolfe line search.

Inspired by the numerator of βWYL
k in [7] and the denominator of βDPRP

k in [8], we propose a new
parameter βLLYZ

k as

βLLYZ
k =

∥gk∥
2
− µ1

∥gk∥

∥gk−1∥
gT

k gk−1

∥gk−1∥
2 + µ2

∣∣∣g⊤k dk−1

∣∣∣ , (1.4)

where µ1 ∈ [0, 1], µ2 > 0.
Inspired by the restart conditions of β1

k and β2
k in [11] and the restart directions of EHS-RD1, EHS-

RD2 in [12], we conduct a descent direction dk with a restart direction, which can be written as

dLLYZ
k =


−gk, (k = 0)
−gk + β

LLYZ
k dk−1, (k ≥ 1) if gT

k gk−1 ≥ 0,

−gk + ξ
gT

k gk−1

∥gk−1∥
2 gk−1, (k ≥ 1) if gT

k gk−1 < 0,
(1.5)

where ξ ∈ (0, 1).

AIMS Mathematics Volume 8, Issue 12, 28791–28807.



28794

We use the strong Wolfe line search where the formal express is as follows

{
f (xk + αkdk) ≤ f (xk) + δαkgT

k dk,∣∣∣g (xk + αkdk)T dk

∣∣∣ ≤ σ ∣∣∣gT
k dk

∣∣∣ , (1.6)

where 0 < δ < σ < 1.

For convenience’s sake, we call the iteration method which is decided by βLLYZ
k and dLLYZ

k the LLYZ
algorithm.

In section two, we mainly introduce the LLYZ algorithm and prove its sufficient descent and global
convergence property. In section three, we conduct some numerical experiments to demonstrate the
good numerical performance of the LLYZ algorithm. In section four, the effectiveness of the LLYZ
algorithm is verified by solving image restoration problems. In section five, a conclusion for this work
is made.

2. LLYZ algorithm and global convergence

Now, based on the search direction (1.5) and the strong Wolfe line search, we formally present the
LLYZ algorithm as follows.

Algorithm : LLYZ

Step 0. (Initialization) Given an initial point x0 ∈ Rn, ξ ∈ (0, 1) and set k := 0, ε > 0, d0 = −g0.
Step 1. if ||g0|| ≤ ε, then stop.
Step 2. Compute a step-length αk by the strong Wolfe line search (1.6).
Step 3. Generate the xk+1 by (1.2).
Step 4. Compute the βk by the formula (1.4), and generate dk+1 by the formula (1.5).
Step 5. Set k := k + 1 and go to Step 1.

Next, we analyze the descent property and global convergence of the LLYZ algorithm.

Lemma 2.1. The parameter βLLYZ
k satisfies the following formula from (1.4) and (1.5):

0 ≤ βLLYZ
k ≤ βFR

k . (2.1)

Proof.

βLLYZ
k =

∥gk∥
2
− µ1

∥gk∥

∥gk−1∥
gT

k gk−1

∥gk−1∥
2 + µ2

∣∣∣gT
k dk−1

∣∣∣ ≥ (1 − µ1) ∥gk∥
2

∥gk−1∥
2 + µ2

∣∣∣gT
k dk−1

∣∣∣ ≥ 0, (2.2)
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βFR
k − β

LLYZ
k =

∥gk∥
2

∥gk−1∥
2 −
∥gk∥

2
− µ1

∥gk∥

∥gk−1∥
gT

k gk−1

∥gk−1∥
2 + µ2 | gT

k dk−1|

⩾
∥gk∥

2

∥gk−1∥
2 −
∥gk∥

2
− µ1

∥gk∥

∥gk−1∥
gT

k gk−1

∥gk−1∥
2

=
µ1
∥gk∥

∥gk−1∥
gT

k gk−1

∥gk−1∥
2

⩾ 0,

(2.3)

combine formulas (2.2) and (2.3), then we have

0 ≤ βLLYZ
k ≤ βFR

k . (2.4)

□

Lemma 2.2. [14] Consider the CGM yield by (1.2) and (1.3), where the step-length αk satisfies the
strong Wolfe line search (1.6) and parameter |βk| ≤ β

FR
k . If 0 < σ < 1

2 , then the CGMs is sufficiently
descent with

−
1

1 − σ
≤

gT
k dk

∥gk∥
2 ≤ −

1 − 2σ
1 − σ

,∀k ≥ 0. (2.5)

The next Lemma proves that the LLYZ algorithm is sufficiently descent, and Lemma 2.2 plays a
very important role in proving the descent property of LLYZ.

Lemma 2.3. If the direction dk is yielded by (1.4)-(1.5) and the step-length αk satisfies the strong
Wolfe line search (1.6), then the following equality holds for any k:

gT
k dk

∥gk∥
2 < 0. (2.6)

That is to say, the LLYZ algorithm is sufficiently descent.

Proof.
When k = 0, then d0 = −g0 and it’s easy to conclude

gT
0 d0

∥g0∥
2 = −1, (2.7)

thus, relation (2.6) holds.
Next, we assume that gT

k−1dk−1 < 0 holds for all k ⩾ 1, and from the second inequality of the strong
Wolfe line search (1.6) we deduce∣∣∣gT

k dk−1

∣∣∣ ≤ σ ∣∣∣gT
k−1dk−1

∣∣∣ = −σgT
k−1dk−1, (2.8)

then we prove (2.6) is true for k ≥ 1 by the following two situations:
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Case (i) When k ≥ 1 and gT
k gk−1 < 0, then dk = −gk + ξ

gT
k gk−1

∥gk−1∥
2 gk−1 and we can deduce

gT
k dk

∥gk∥
2 =
− ∥gk∥

2 + ξ
(gT

k gk−1)2

∥gk−1∥
2

∥gk∥
2

≥ −
∥gk∥

2

∥gk∥
2

= −1,

(2.9)

gT
k dk

∥gk∥
2 =
− ∥gk∥

2 + ξ
(gT

k gk−1)2

∥gk−1∥
2

∥gk∥
2

≤
− ∥gk∥

2 + ξ ∥gk∥
2∥gk−1∥

2

∥gk−1∥
2

∥gk∥
2

= −(1 − ξ),

(2.10)

therefore,

−1 ≤
gT

k dk

∥gk∥
2 ≤ −(1 − ξ), (2.11)

and relation (2.6) holds.
Case (ii) When k ≥ 1 and gT

k gk−1 ≥ 0, then dk = −gk + β
LLYZ
k dk−1

gT
k dk

∥gk∥
2 =

gT
k

(
−gk + β

LLYZ
k dk−1

)
∥gk∥

2

= −1 + βLLYZ
k

gT
k dk−1

∥gk∥
2 ,

together with βLLYZ
k ≥ 0 in (2.4), we have

−1 − βLLYZ
k

|gT
k dk−1|

∥gk∥
2 ≤

gT
k dk

∥gk∥
2 ≤ −1 + βLLYZ

k

|gT
k dk−1|

∥gk∥
2 .

The above equation together with βLLYZ
k ≤ βFR

k in (2.4), we have

−1 − βLLYZ
k

|gT
k dk−1|

∥gk∥
2 ≥ −1 − βFR

k

|gT
k dk−1|

∥gk∥
2

= −1 −
|gT

k dk−1|

∥gk−1∥
2 ,

−1 + βLLYZ
k

|gT
k dk−1|

∥gk∥
2 ≤ −1 + βFR

k

|gT
k dk−1|

∥gk∥
2

= −1 +
|gT

k dk−1|

∥gk−1∥
2 ,
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namely,

−1 −
|gT

k dk−1|

∥gk−1∥
2 ≤

gT
k dk

∥gk∥
2 ≤ −1 +

|gT
k dk−1|

∥gk−1∥
2 , (2.12)

together with (2.8), we get that

−1 + σ
gT

k−1dk−1

∥gk−1∥
2 ≤

gT
k dk

∥gk∥
2 ≤ −1 − σ

gT
k−1dk−1

∥gk−1∥
2 . (2.13)

Case (a) If dk−1 is generated by dk−1 = −gk−1 + β
LLYZ
k−1 dk−2, together with (2.5) and on the left side of

(2.13), we have

−1 + σ
gT

k−1dk−1

∥gk−1∥
2 ≥ −1 + σ(−

1
1 − σ

)

= −
1

1 − σ
,

(2.14)

and on the right side of (2.13) we have

−1 − σ
gT

k−1dk−1

∥gk−1∥
2 ≤ −1 − σ(−

1
1 − σ

)

= −
1 − 2σ
1 − σ

< 0,

(2.15)

then we obtain

−
1

1 − σ
≤

gT
k dk

∥gk∥
2 < 0. (2.16)

Case (b) If dk−1 is generated by dk−1 = −gk−1 + ξ
gT

k−1gk−2

∥gk−2∥
2 gk−2, together with (2.7), (2.9) and (2.13),

we have
gT

k dk

∥gk∥
2 ≤ −1 − σ

gT
k−1dk−1

∥gk−1∥
2

≤ σ − 1
< 0,

(2.17)

then relation (2.6) holds. □

Next, in order to prove LLYZ’s global convergence, we need to use the following assumptions as
well as the Zoutendijk condition [15]:

Assumption :
(H1) The objective function f (x) is bounded on the level set Λ = {x ∈ Rn | f (x) ≤ f (x0)}.
(H2) In the neighborhood U of Λ, the objective function f (x) is continuously differentiable and the
gradient gk is Lipschitz continuous; that is, there exists a constant L > 0 such that

∥g(x) − g(y)∥ ≤ L∥x − y∥,∀x, y ∈ U.
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Lemma 2.4. [15] Suppose that Assumptions (H1) and (H2) hold and the iteration consists of (1.2) and
(1.3). If the direction dk is descent and the step-length αk conforms to the Wolfe line search, then

∞∑
k=0

(
gT

k dk

)2

∥dk∥
2 < +∞, (2.18)

and if the sufficient descent condition gT
k dk ≤ −c ∥gk∥

2 (c > 0) is satisfied, then (2.18) can be written as

∞∑
k=0

∥gk∥
4

∥dk∥
2 < ∞. (2.19)

Now, we prove the global convergence of the LLYZ algorithm.

Theorem 2.1. If Assumptions (H1) and (H2) hold and the iteration sequence {xk} is generated by the
LLYZ algorithm, then the LLYZ algorithm is globally convergent, namely,

lim
k→∞

in f ||gk|| = 0. (2.20)

Proof.
We give a proof by contradiction for its convergence, that is, there exists a constant γ > 0, such that
∥gk∥

2
≥ γ, ∀k ≥ 0.

Case (i) If the search direction derives from dk = −gk + ξ
gT

k gk−1

∥gk−1∥
2 gk−1 and ξ ∈ (0, 1), we have

∥dk∥
2 = ∥gk∥

2
− 2ξ

(
gT

k gk−1

)2

∥gk−1∥
2 + ξ

2

(
gT

k gk−1

)2

∥gk−1∥
4 ∥gk−1∥

2

= ∥gk∥
2
− ξ (2 − ξ)

(
gT

k gk−1

)2

∥gk−1∥
2

< ∥gk∥
2 .

(2.21)

Case (ii) If the search direction derives from dk = −gk + β
LLYZ
k dk−1, we have

∥dk∥
2 = ∥gk∥

2
− 2βLLYZ

k gT
k dk−1 +

(
βLLYZ

k

)2
∥dk−1∥

2 . (2.22)

By Lemma 2.1, we can deduce:

∥dk∥
2
≤ ∥gk∥

2 + 2βLLYZ
k

∣∣∣gT
k dk−1

∣∣∣ + (
βLLYZ

k

)2
∥dk−1∥

2

≤ ∥gk∥
2 + 2βFR

k

∣∣∣gT
k dk−1

∣∣∣ + (
βFR

k

)2
∥dk−1∥

2 ,
(2.23)
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and together with the second inequality of the strong Wolfe line search (1.6) and Lemma 2.2, we have

∥dk∥
2

∥gk∥
4 ⩽

1
∥gk∥

2 + 2

∣∣∣gT
k dk−1

∣∣∣
∥gk∥

2
∥gk−1∥

2 +
∥dk−1∥

2

∥gk−1∥
4

⩽
1
∥gk∥

2 + 2σ

∣∣∣gT
k−1dk−1

∣∣∣
∥gk∥

2
∥gk−1∥

2 +
∥dk−1∥

2

∥gk−1∥
4

⩽
1 + σ
1 − σ

1
∥gk∥

2 +
∥dk−1∥

2

∥gk−1∥
4

= Γ
1
∥gk∥

2 +
∥dk−1∥

2

∥gk−1∥
4

≤

k∑
i=1

Γ

∥gi∥
2 +

1
∥g0∥

2

≤
Γk
γ
+

1
γ

=
Γk + 1
γ
,

(2.24)

where Γ = 1+σ
1−σ , then we can obtain

∥gk∥
4

∥dk∥
2 ≥

γ

Γk + 1
, (2.25)

where (2.25) contradicts with (2.19). Thus, the LLYZ algorithm is globally convergent. □

3. Numerical experiments

In this section, we test the LLYZ method with the N. Andrei (AN) [16], DDY1 [11], EHS-RD2 [12]
and WYL [7] methods. The above four methods proposed by previous researchers all have good
numerical performances. We use 92 unconstrained optimization problems to test the above five
conjugate gradient methods. The test problems come from [17, 18, 19], and the dimensions of them
are from two to 82, 000. The testing environment is Matlab2018b, Win10 operating system and Dell
desktop computer (Intel (R) Core (TM) i7-10700 CPU@2.90GHz) 16.0GB memory.

All the algorithms use the standard Wolfe line search, and the algorithm termination condition is
∥gk∥ ≤ 10−6 or Itr > 2000. Denote “NaN” when Itr > 2000 occurs. We set up δ = 0.01, σ = 0.1 as the
parameters of the standard Wolfe line search and µ1 = 0.78, µ2 = 1.50, ξ = 0.05 for the LLYZ method,
while the parameters in AN, DDY1 and EHS-RD2 are the same as their original settings.

We use Dolan and Moré (D-M) performance profiles [20] to visually show the numerical
comparison results. Figures 1 and 2 respectively represent the LLYZ performance best compared
to other methods in terms of Central Processing Unit (CPU) computation time and iterations. The
specific numerical experimental results are shown in Tables 1, 2 and 3.
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Figure 1. CPU time performance profile.
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Figure 2. Iterations performance profile.

Table 1. Numerical results of the five method.

LLYZ AN DDY1 EHS-RD2 WYL

Name/n Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr

badscp/2 0.00/1.1e+02/28 0.01/1.1e+02/27 0.01/1.1e+02/29 0.00/1.1e+02/28 0.01/2.2e+02/37
cosine/200 0.00/7.2e+01/19 0.01/9.3e+01/29 0.00/8.0e+01/25 0.00/7.0e+01/16 0.00/1.5e+02/35
cosine/800 0.01/6.9e+01/17 0.01/1.2e+02/45 0.01/7.6e+01/20 0.01/6.4e+01/16 0.01/1.2e+02/20
cosine/2000 0.01/8.0e+01/18 0.01/8.7e+01/25 0.01/9.7e+01/31 0.01/8.0e+01/19 0.02/1.8e+02/37
dixmaana/90 0.00/6.8e+01/14 0.03/1.7e+02/28 0.01/7.6e+01/17 0.01/7.2e+01/19 0.01/1.6e+02/27

dixmaana/105 0.00/5.5e+01/11 0.01/1.8e+02/34 0.00/7.1e+01/14 0.01/8.1e+01/16 0.01/2.0e+02/34
dixmaana/120 0.01/7.4e+01/16 0.01/1.3e+02/25 0.00/7.2e+01/14 0.01/7.0e+01/15 0.01/1.3e+02/31

dixmaanb/11400 0.27/9.0e+01/23 0.47/1.5e+02/29 0.21/7.0e+01/13 0.26/8.7e+01/21 0.56/1.9e+02/28
dixmaanb/12000 0.24/7.7e+01/15 0.57/1.8e+02/35 0.26/8.2e+01/16 0.26/8.2e+01/16 0.53/1.7e+02/31
dixmaanc/15600 0.38/8.6e+01/18 0.65/1.5e+02/27 0.38/8.9e+01/22 0.39/9.3e+01/20 0.75/1.7e+02/32
dixmaanc/15000 0.35/8.4e+01/17 0.67/1.6e+02/28 0.35/8.4e+01/18 0.36/8.7e+01/20 0.61/1.5e+02/26
dixmaand/300 0.01/7.1e+01/17 0.04/1.4e+02/28 0.01/7.8e+01/21 0.01/7.4e+01/14 0.04/2.0e+02/33
dixmaand/900 0.02/8.0e+01/13 0.06/1.9e+02/32 0.03/8.3e+01/20 0.02/7.5e+01/14 0.04/1.2e+02/24
dixmaanf/300 0.05/3.7e+02/216 0.16/8.6e+02/193 0.04/3.1e+02/250 0.10/7.8e+02/465 0.05/4.5e+02/129
dixmaanf/1200 0.30/7.8e+02/436 0.58/1.6e+03/372 0.13/3.4e+02/272 0.48/1.3e+03/713 0.41/1.1e+03/281

dixmaanh/3 0.00/6.6e+01/17 0.02/1.8e+02/32 0.00/6.4e+01/19 0.00/7.4e+01/24 0.00/1.3e+02/29
dixmaanh/9 0.01/9.5e+01/44 0.01/2.0e+02/42 0.01/1.1e+02/60 0.01/1.0e+02/48 0.01/1.5e+02/33
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Table 2. Numerical results of the five method (continued).

LLYZ AN DDY1 EHS-RD2 WYL

Name/n Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr

dixmaanh/12 0.01/1.1e+02/48 0.02/2.1e+02/44 0.01/1.2e+02/61 0.01/9.2e+01/38 0.02/2.9e+02/67
dixmaani/3600 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN

dixmaanj/90 0.10/1.8e+03/1034 0.24/3.7e+03/896 0.09/1.5e+03/1388 0.16/2.9e+03/1644 0.09/1.7e+03/420
dixmaanj/108 0.09/1.5e+03/919 0.21/3.4e+03/773 NaN/NaN/NaN NaN/NaN/NaN 0.17/2.9e+03/722

dixmaanl/1080 0.13/3.9e+02/216 NaN/NaN/NaN NaN/NaN/NaN 0.16/4.7e+02/291 0.55/1.6e+03/419
dixmaanl/1170 0.12/3.3e+02/195 NaN/NaN/NaN NaN/NaN/NaN 0.10/2.8e+02/160 NaN/NaN/NaN
dixon3dq/3000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN

dqrtic/240 0.01/1.0e+02/27 0.04/4.8e+02/71 0.01/1.0e+02/27 0.01/1.0e+02/24 0.01/1.4e+02/30
dqrtic/270 0.01/9.6e+01/22 0.03/4.0e+02/65 0.01/1.0e+02/26 0.01/1.0e+02/27 0.01/1.8e+02/34
dqrtic/300 0.01/9.4e+01/19 0.02/3.2e+02/50 0.01/1.1e+02/30 0.01/1.1e+02/28 0.01/1.3e+02/23

edensch/3600 0.06/1.8e+02/49 0.09/2.1e+02/60 0.14/2.1e+02/51 0.08/2.7e+02/62 0.87/1.3e+03/154
edensch/3800 0.06/1.6e+02/60 0.09/2.4e+02/57 0.12/1.7e+02/51 0.11/1.9e+02/46 0.24/3.4e+02/60
edensch/3500 0.01/1.1e+02/49 0.02/2.1e+02/56 0.05/4.5e+02/101 0.01/1.4e+02/49 0.06/5.4e+02/70

eg2/500 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN
fletchcr/2000 0.01/1.9e+02/91 0.01/1.6e+02/77 0.03/9.8e+02/133 0.01/2.1e+02/116 0.07/2.5e+03/272
fletchcr/2100 0.01/2.1e+02/112 0.01/2.5e+02/148 0.05/1.6e+03/203 0.01/2.5e+02/149 0.08/2.6e+03/273
fletchcr/2500 0.01/2.5e+02/129 0.01/2.4e+02/143 0.02/7.0e+02/111 0.01/2.6e+02/139 0.02/6.8e+02/90

freuroth/8 0.01/7.2e+02/353 NaN/NaN/NaN 0.01/7.3e+02/205 NaN/NaN/NaN 0.06/3.2e+03/558
freuroth/4 0.01/5.7e+02/293 NaN/NaN/NaN 0.01/5.2e+02/142 NaN/NaN/NaN 0.04/2.2e+03/436
genrose/3 0.01/4.1e+02/221 NaN/NaN/NaN 0.01/3.4e+02/162 0.04/1.8e+03/1083 0.02/1.1e+03/221
genrose/12 0.03/1.3e+03/904 NaN/NaN/NaN NaN/NaN/NaN 0.07/3.3e+03/1909 0.03/1.8e+03/464
himmelbg/2 0.00/5.0e+00/2 0.01/5.0e+00/2 0.00/5.0e+00/2 0.00/5.0e+00/2 0.00/5.0e+00/2

himmelbg/2000 0.00/1.0e+01/2 0.00/1.0e+01/2 0.00/1.0e+01/2 0.00/1.0e+01/2 0.00/1.0e+01/2
penalty1/800 0.11/1.8e+02/29 0.14/2.2e+02/31 0.15/2.6e+02/43 0.11/2.0e+02/34 1.54/2.8e+03/391
penalty1/1000 0.18/2.1e+02/31 0.21/2.5e+02/36 0.19/2.2e+02/33 0.19/2.3e+02/33 6.14/7.3e+03/1015
penalty1/1500 0.13/7.0e+01/12 0.17/9.5e+01/16 0.13/7.0e+01/12 0.13/7.0e+01/12 0.13/7.0e+01/12
penalty1/2000 0.30/9.4e+01/24 0.36/1.1e+02/22 0.31/9.5e+01/22 0.35/1.1e+02/24 0.82/2.5e+02/41
quartc/1200 0.03/1.2e+02/29 0.09/3.3e+02/54 0.03/1.4e+02/42 0.03/1.3e+02/37 0.05/2.2e+02/50
quartc/1600 0.05/1.4e+02/44 0.09/2.6e+02/51 0.05/1.4e+02/45 0.05/1.3e+02/39 0.08/2.3e+02/51
quartc/1800 0.05/1.3e+02/32 0.21/5.7e+02/90 0.06/1.5e+02/52 0.05/1.2e+02/28 0.08/2.3e+02/49
quartc/2000 0.05/1.3e+02/37 0.15/3.7e+02/53 0.05/1.4e+02/38 0.05/1.3e+02/31 0.08/2.0e+02/48
woods/100 0.02/8.1e+02/460 NaN/NaN/NaN NaN/NaN/NaN 0.05/2.6e+03/1504 0.05/2.8e+03/647
woods/200 0.02/8.2e+02/443 NaN/NaN/NaN 0.01/6.1e+02/336 0.03/1.6e+03/889 0.02/8.5e+02/195
woods/300 0.02/8.9e+02/526 NaN/NaN/NaN 0.03/1.3e+03/976 0.04/1.8e+03/1044 0.03/1.5e+03/342
bdexp/20 0.00/7.0e+00/2 0.01/2.3e+01/5 0.00/7.0e+00/2 0.00/7.0e+00/2 0.00/7.0e+00/2

bdexp/2000 0.00/8.0e+00/2 0.00/1.9e+01/3 0.00/8.0e+00/2 0.00/8.0e+00/2 0.00/8.0e+00/2
exdenschnb/600 0.00/7.4e+01/15 0.01/2.0e+02/39 0.00/1.0e+02/38 0.00/7.6e+01/16 0.00/1.4e+02/27
exdenschnb/900 0.00/7.9e+01/19 0.01/2.3e+02/37 0.00/8.2e+01/22 0.00/7.7e+01/16 0.00/1.6e+02/27

exdenschnb/1000 0.00/7.2e+01/16 0.00/1.8e+02/32 0.00/8.3e+01/23 0.00/7.3e+01/17 0.00/1.2e+02/24
genquartic/2000 0.00/7.6e+01/20 0.02/1.7e+02/33 0.00/9.1e+01/28 0.00/8.9e+01/27 0.01/1.8e+02/38
genquartic/1600 0.00/7.4e+01/16 0.01/1.4e+02/26 0.00/1.0e+02/40 0.00/7.8e+01/17 0.01/2.5e+02/52
genquartic/1900 0.00/8.5e+01/23 0.01/2.1e+02/38 0.00/9.5e+01/40 0.00/9.0e+01/25 0.01/2.4e+02/42

sine/1000 0.00/7.5e+01/18 0.03/2.6e+02/148 0.01/9.5e+01/34 0.01/8.3e+01/22 0.02/2.6e+02/51
sine/1200 0.01/8.8e+01/23 0.04/3.6e+02/219 0.01/1.3e+02/61 0.01/9.4e+01/27 0.01/2.1e+02/45
sine/1400 NaN/NaN/NaN 0.06/7.2e+02/485 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN
fletcbv3/2 0.00/1.0e+00/0 0.00/1.0e+00/0 0.00/1.0e+00/0 0.00/1.0e+00/0 0.00/1.0e+00/0

nonscomp/78000 0.12/1.7e+02/76 0.64/7.4e+02/481 0.42/4.9e+02/402 0.12/1.5e+02/68 0.29/4.3e+02/90
nonscomp/80000 0.13/1.6e+02/77 0.14/1.8e+02/92 NaN/NaN/NaN 0.26/3.1e+02/165 0.55/7.2e+02/204
nonscomp/82000 0.22/2.7e+02/126 0.15/1.7e+02/84 NaN/NaN/NaN 0.13/1.5e+02/66 0.29/3.7e+02/87

raydan2/1200 0.00/5.6e+01/10 0.01/7.1e+01/11 0.00/5.6e+01/10 0.00/5.6e+01/10 0.00/8.7e+01/13
raydan2/1600 0.00/7.4e+01/17 0.00/1.1e+02/15 0.00/7.4e+01/17 0.00/7.2e+01/15 0.00/8.8e+01/19
raydan2/1800 0.00/7.6e+01/17 0.00/1.0e+02/15 0.00/7.7e+01/18 0.00/8.0e+01/22 0.01/1.4e+02/25
raydan2/2000 0.00/6.9e+01/13 0.00/9.1e+01/14 0.00/7.1e+01/14 0.00/7.1e+01/14 0.00/7.5e+01/10
diagonal1/20 0.00/1.5e+02/82 0.01/1.4e+02/69 0.00/2.0e+02/90 0.00/1.3e+02/70 0.01/2.6e+02/60
diagonal1/60 0.01/2.8e+02/140 0.01/3.2e+02/186 0.01/4.7e+02/134 0.00/1.9e+02/98 0.01/5.6e+02/110

diagonal1/1000 0.41/1.1e+04/1351 0.43/1.1e+04/1760 0.55/1.5e+04/1612 0.44/1.2e+04/1683 NaN/NaN/NaN
diagonal1/1200 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN 0.55/1.3e+04/1712 NaN/NaN/NaN

diagonal2/60 0.00/2.0e+02/110 0.02/7.1e+02/124 0.00/1.3e+02/70 0.00/1.9e+02/115 0.01/3.2e+02/79
diagonal2/80 0.00/2.0e+02/119 0.02/8.6e+02/143 0.00/1.3e+02/72 0.01/2.4e+02/148 0.01/3.5e+02/80

diagonal2/100 0.00/1.8e+02/90 0.02/1.2e+03/193 0.00/1.6e+02/86 0.01/2.9e+02/167 0.01/3.8e+02/100
diagonal3/800 0.29/5.9e+03/826 0.25/4.4e+03/1898 0.66/1.4e+04/1502 0.12/2.4e+03/1112 0.43/9.0e+03/1033
diagonal3/1000 0.60/1.1e+04/1524 NaN/NaN/NaN NaN/NaN/NaN 0.42/7.3e+03/1340 NaN/NaN/NaN

bv/4000 0.04/1.0e+00/0 0.04/1.0e+00/0 0.04/1.0e+00/0 0.04/1.0e+00/0 0.04/1.0e+00/0
ie/300 0.99/5.7e+01/14 2.52/1.5e+02/22 0.99/5.7e+01/14 0.92/5.3e+01/13 2.28/1.3e+02/22
ie/330 1.05/5.0e+01/11 2.69/1.3e+02/21 1.13/5.4e+01/13 1.19/5.7e+01/14 1.86/8.9e+01/20
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Table 3. Numerical results of the five method (continued).

LLYZ AN DDY1 EHS-RD2 WYL

Name/n Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr Tcpu/NG/Itr

ie/360 1.19/4.8e+01/11 4.88/2.0e+02/29 1.49/6.0e+01/15 1.79/7.2e+01/15 5.83/2.4e+02/42
lin/100 0.02/6.3e+01/13 0.06/1.4e+02/22 0.02/6.3e+01/13 0.02/6.3e+01/13 0.02/1.0e+02/15
lin/200 0.04/7.8e+01/13 0.05/9.3e+01/16 0.04/7.8e+01/13 0.04/7.8e+01/13 0.04/8.4e+01/13

pen1/2000 7.70/6.7e+02/246 NaN/NaN/NaN 5.47/4.7e+02/87 29.55/2.4e+03/1153 5.49/4.5e+02/77
pen1/2800 17.40/7.5e+02/236 22.00/9.9e+02/135 NaN/NaN/NaN 36.27/1.5e+03/707 123.09/5.3e+03/760
pen1/3000 17.28/6.7e+02/156 NaN/NaN/NaN 30.17/1.1e+03/168 65.61/2.5e+03/1379 60.03/2.1e+03/320

trid/100 0.01/1.3e+02/69 0.02/1.3e+02/68 0.01/1.9e+02/134 0.01/1.2e+02/57 0.03/5.3e+02/125
trid/160 0.01/1.3e+02/71 0.01/1.3e+02/71 0.01/1.3e+02/70 0.02/2.0e+02/139 0.01/1.2e+02/57
trid/180 0.01/1.2e+02/65 0.01/1.2e+02/61 0.01/1.2e+02/64 0.02/2.0e+02/145 0.01/1.1e+02/52
trid/200 0.01/1.2e+02/68 0.01/1.2e+02/68 0.01/1.2e+02/62 0.02/2.0e+02/138 0.01/1.1e+02/48

From Figures 1 and 2, and Tables 1, 2 and 3, we have that the numerical performance of the LLYZ
is better than the AN, DDY1, EHS-RD2 and WYL methods, and it can successfully solve about 96%
of the test problems. The LLYZ also uses less CPU time and fewer iterations, which indicates that it is
more effective than the other four methods.

4. Image restoration problems

In this section, we use the LLYZ, Hager-Zhang (HZ) [21], Dai-Kou (DK) [22] and DPRP [8]
methods to restore images that added salt and pepper noise, then we compare the CPU calculation
time and peak signal-to-noise ratio (PSNR) of restored images for four algorithms.

Raymond et al. proposed the two-phase scheme to remove pulse noise in [23]. In the first stage,
we use the median filter to find the salt and pepper noise points in the images. Mark X represents the
original image with pixels M ∗N, let A = {1, 2, 3, · · · ,M}∗{1, 2, 3, · · · ,N} be the index set of the image
X andN ⊂ A represents the set of noise point indicators detected in the first stage. In the second stage,
we use conjugate gradient method to solve the following smooth unconstrained optimization problem,
then removing noise and repairing images:

min
u

Fα(u) :=
∑

(i, j)∈N

2 ∑
(m,n)∈Vi, j\N

φα
(
ui, j − ym,n

)
+

∑
(m,n)∈Vi, j∩N

φα
(
ui, j − um,n

) . [24] (4.1)

Where Vi, j = {(i, j − 1), (i, j + 1), (i − 1, j), (i + 1, j)} is the set of the neighbors for the pixel at pixel
location (i, j) ∈ A, ym,n is the observed pixel value of the image at pixel location (m, n), φα(t) =

√
t2 + α

(α > 0) is an edge-preserving function and u =
[
ui, j

]
(i, j)∈N

is a column vector with length c, where c is
the elements number of set N .

We use the PSNR calculation method from [25]

PSNR = 10 log10
2552

1
MN

∑
i, j

(
xr

i, j − x∗i, j
)2 , (4.2)

where xr
i, j and x∗i, j denote the pixel values of the restored image and the original image.

We use four original pictures to test the image restoration capability of the above four methods. The
four pictures’ pixels are all 512 ∗ 512 and the pictures have been added with 30%, 50%, 70% and 90%
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salt and pepper noise, then we use the above four different conjugate gradient methods to restore them.
The termination condition of the algorithm is Itr > 300 or |Fα(uk)−Fα(uk−1)|

|Fα(uk)| ≤ 10−4.

To save space, Figure 3 only shows the original pictures, which added 90% salt and pepper noise,
and their image restoration results. Table 4 shows us the detailed data of the CPU calculation time and
PSNR of the restored images.

Original Original Original Original

Original with 90% salt-
and-pepper noise

Original with 90% salt-
and-pepper noise

Original with 90% salt-
and-pepper noise

Original with 90% salt-
and-pepper noise

LLYZ LLYZ LLYZ LLYZ

HZ HZ HZ HZ

DK DK DK DK
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DPRP DPRP DPRP DPRP

Figure 3. First row: The original images, second row: The noisy images with 90% salt-
and pepper noise, third row to last row: Restored images by LLYZ method, HZ method, DK
method, DPRP method.

Table 4. Numerical results of image restoration testing.

Image Noise ratio LLYZ HZ DK DPRP

Tcpu/PSNR Tcpu/PSNR Tcpu/PSNR Tcpu/PSNR

Lena.bmp 30% 3.64/36.82 4.33/36.94 3.77/36.96 3.85/36.99
Lena.bmp 50% 6.45/34.32 6.01/34.18 6.45/34.43 6.39/34.44
Lena.bmp 70% 7.82/30.98 10.14/31.10 7.70/31.07 8.17/31.09
Lena.bmp 90% 15.76/26.27 14.17/26.03 10.95/26.05 10.17/25.99

Goldhill.bmp 30% 3.92/35.01 3.37/34.96 3.61/35.03 3.26/35.01
Goldhill.bmp 50% 5.12/32.46 6.03/32.65 5.94/32.66 6.13/32.73
Goldhill.bmp 70% 8.19/29.61 7.94/29.52 8.28/29.80 8.16/29.81
Goldhill.bmp 90% 17.24/25.60 13.38/25.05 12.96/25.59 11.76/25.54
Barbara.bmp 30% 3.72/28.67 3.96/28.65 3.73/28.66 3.24/28.66
Barbara.bmp 50% 5.70/26.71 6.22/26.71 6.00/26.69 6.39/26.70
Barbara.bmp 70% 7.71/24.60 8.77/24.64 7.68/24.62 7.67/24.61
Barbara.bmp 90% 15.49/22.52 15.86/22.52 12.41/22.52 10.95/22.50
Baboon.bmp 30% 3.72/26.52 3.90/26.49 3.77/26.50 3.67/26.51
Baboon.bmp 50% 6.43/24.56 6.30/24.56 6.61/24.55 6.87/24.54
Baboon.bmp 70% 9.33/22.48 7.69/22.47 8.25/22.46 8.21/22.45
Baboon.bmp 90% 15.61/20.14 14.94/20.15 12.54/20.15 13.25/20.13

From the above pictures, we can see that the above four modified conjugate methods can all restore
noisy images very well. The CPU time and PSNR of image restoration is clearly displayed in Table 4.
From Table 4, We find that the PSNR values of the images restored by LLYZ is higher than HZ, DK
and DPRP in most cases, which means images restored by LLYZ are clearer than other methods. The
above results indicate that the LLYZ method is effective.

5. Conclusions

In this paper we have proposed a new conjugate gradient method with a restart direction. First,
based on the βPRP

k and previous research experiences, we appropriately increased the denominator
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and decreased the numerator of βk, and proposed a new conjugate parameter βLLYZ
k . Meanwhile, by

calculating the size of gT
k gk−1, we determined different descent directions of the LLYZ method to ensure

its sufficient descent. Second, we proved the sufficient descent property and global convergence of the
LLYZ method under the strong Wolfe line search [9, 10], then we compared the LLYZ method with the
AN [16], DDY1 [11], EHS-RD2 [12] and WYL [7] methods in terms of numerical performances by
numerical experiments. From Figures 1 and 2 and Tables 1, 2 and 3, we found that the LLYZ method
performed better than other methods and it could successfully solve about 96% of the test problems.
Lastly, we used the LLYZ, HZ [21], DK [22] and DPRP [8] methods to restore images that added
salt-and-pepper noise. From Figure 3 and Table 4, we have that the LLYZ method performed well in
image restoration problems by solving the smooth unconstrained optimization problem (4.1). To sum
up, the proposed method LLYZ is an effective algorithm.

In the future, we will focus on the innovation of restart directions of the conjugate method, which
can make the improved methods converge in less CPU time and solve most problems successfully.
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