Research article Special Issues

Real-world validation of fractional-order model for COVID-19 vaccination impact

  • Received: 09 September 2023 Revised: 11 December 2023 Accepted: 19 December 2023 Published: 09 January 2024
  • MSC : 34A08, 37N25

  • In this manuscript, we develop a fractional-order mathematical model to characterize the propagation dynamics of COVID-19 outbreaks and assess the influence of vaccination interventions. The model comprises a set of eight nonlinear fractional-order differential equations in the Caputo sense. To establish the existence and uniqueness of solutions, we employ the fixed-point technique. Furthermore, we employ the effective fractional Adams-Bashforth numerical scheme to explore both the approximate solutions and the dynamic behavior inherent to the examined model. All of the results are numerically visualized through the consideration of various fractional orders. Furthermore, the real data from three different countries are compared with the simulated results, and good agreements are obtained, revealing the effectiveness of this work.

    Citation: Sara Salem Alzaid, Badr Saad T. Alkahtani. Real-world validation of fractional-order model for COVID-19 vaccination impact[J]. AIMS Mathematics, 2024, 9(2): 3685-3706. doi: 10.3934/math.2024181

    Related Papers:

  • In this manuscript, we develop a fractional-order mathematical model to characterize the propagation dynamics of COVID-19 outbreaks and assess the influence of vaccination interventions. The model comprises a set of eight nonlinear fractional-order differential equations in the Caputo sense. To establish the existence and uniqueness of solutions, we employ the fixed-point technique. Furthermore, we employ the effective fractional Adams-Bashforth numerical scheme to explore both the approximate solutions and the dynamic behavior inherent to the examined model. All of the results are numerically visualized through the consideration of various fractional orders. Furthermore, the real data from three different countries are compared with the simulated results, and good agreements are obtained, revealing the effectiveness of this work.



    加载中


    [1] J. Djordjevic, C. Silva, D. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168–175. http://dx.doi.org/10.1016/j.aml.2018.05.005 doi: 10.1016/j.aml.2018.05.005
    [2] F. Ndaïrou, I. Area, J. Nieto, C. Silva, D. Torres, Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil, Math. Method. Appl. Sci., 41 (2018), 8929–8941. http://dx.doi.org/10.1002/mma.4702 doi: 10.1002/mma.4702
    [3] A. Rachah, D. Torres, Dynamics and optimal control of Ebola transmission, Math. Comput. Sci., 10 (2016), 331–342. http://dx.doi.org/10.1007/s11786-016-0268-y doi: 10.1007/s11786-016-0268-y
    [4] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical models in epidemiology, New York: Springer, 2019. http://dx.doi.org/10.1007/978-1-4939-9828-9
    [5] COVID-19 Coronavirus Pandemic, Worldometer. Info Publisher, 2020. Available from: https://www.worldometers.info/coronavirus.
    [6] S. Annas, M. Pratama, M. Rifandi, W. Sanusi, S. Side, Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia, Chaos Soliton. Fract., 139 (2020), 110072. http://dx.doi.org/10.1016/j.chaos.2020.110072 doi: 10.1016/j.chaos.2020.110072
    [7] I. Darti, A. Suryanto, H. Panigoro, H. Susanto, Forecasting COVID-19 epidemic in Spain and Italy using a generalized Richards model with quantified uncertainty, Commun. Biomath. Sci., 3 (2021), 90–100. http://dx.doi.org/10.5614/cbms.2020.3.2.1 doi: 10.5614/cbms.2020.3.2.1
    [8] N. Nuraini, K. Sukandar, P. Hadisoemarto, H. Susanto, A. Hasan, N. Sumarti, Mathematical models for assessing vaccination scenarios in several provinces in Indonesia, Infect. Dis. Model., 6 (2021), 1236–1258. http://dx.doi.org/10.1016/j.idm.2021.09.002 doi: 10.1016/j.idm.2021.09.002
    [9] Z. Mukandavire, F. Nyabadza, N. Malunguza, D. Cuadros, T. Shiri, G. Musuka, Quantifying early COVID-19 outbreak transmission in South Africa and exploring vaccine efficacy scenarios, PloS One, 15 (2020), 0236003. http://dx.doi.org/10.1371/journal.pone.0236003 doi: 10.1371/journal.pone.0236003
    [10] M. El-Shorbagy, M. Ur Rahman, M. Alyami, On the analysis of the fractional model of COVID-19 under the piecewise global operators, Math. Biosci. Eng., 4 (2023), 6134–6173. http://dx.doi.org/10.3934/mbe.2023265 doi: 10.3934/mbe.2023265
    [11] M. Diagne, H. Rwezaura, S. Tchoumi, J. Tchuenche, A mathematical model of COVID-19 with vaccination and treatment, Comput. Math. Method. M., 2021 (2021), 1250129. http://dx.doi.org/10.1155/2021/1250129 doi: 10.1155/2021/1250129
    [12] A. Elsonbaty, Z. Sabir, R. Ramaswamy, W. Adel, Dynamical analysis of a novel discrete fractional SITRS model for COVID-19, Fractals, 29 (2021), 2140035. http://dx.doi.org/10.1142/S0218348X21400351 doi: 10.1142/S0218348X21400351
    [13] N. Ahmed, A. Elsonbaty, A. Raza, M. Rafiq, W. Adel, Numerical simulation and stability analysis of a novel reaction–diffusion COVID-19 model, Nonlinear Dyn., 106 (2021), 1293–1310. http://dx.doi.org/10.1007/s11071-021-06623-9 doi: 10.1007/s11071-021-06623-9
    [14] W. Adel, Y. Amer, E. Youssef, A. Mahdy, Mathematical analysis and simulations for a Caputo-Fabrizio fractional COVID-19 model, Partial Differential Equations in Applied Mathematics, 8 (2023), 100558. http://dx.doi.org/10.1016/j.padiff.2023.100558 doi: 10.1016/j.padiff.2023.100558
    [15] Y. Anjam, R. Shafqat, I. Sarris, M. Ur Rahman, S. Touseef, M. Arshad, A fractional order investigation of smoking model using Caputo-Fabrizio differential operator, Fractal Fract., 6 (2022), 623. http://dx.doi.org/10.3390/fractalfract6110623 doi: 10.3390/fractalfract6110623
    [16] X. Liu, M. Arfan, M. Ur Rahman, B. Fatima, Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator, Comput. Method. Biomec., 26 (2023), 98–112. http://dx.doi.org/10.1080/10255842.2022.2047954 doi: 10.1080/10255842.2022.2047954
    [17] P. Liu, M. Ur Rahman, A. Din, Fractal fractional based transmission dynamics of COVID-19 epidemic model, Comput. Method. Biomec., 25 (2022), 1852–1869. http://dx.doi.org/10.1080/10255842.2022.2040489 doi: 10.1080/10255842.2022.2040489
    [18] H. Qu, M. Rr Rahman, M. Arfan, M. Salimi, S. Salahshour, A. Ahmadian, Fractal-fractional dynamical system of Typhoid disease including protection from infection, Eng. Comput., 39 (2023), 1553–1562. http://dx.doi.org/10.1007/s00366-021-01536-y doi: 10.1007/s00366-021-01536-y
    [19] B. Fatima, M. Yavuz, M. Ur Rahman, F. Al-Duais, Modeling the epidemic trend of middle eastern respiratory syndrome coronavirus with optimal control, Math. Biosci. Eng., 20 (2023), 11847–11874. http://dx.doi.org/10.3934/mbe.2023527 doi: 10.3934/mbe.2023527
    [20] P. Li, Y. Lu, C. Xu, J. Ren, Insight into Hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay, Cogn. Comput., 15 (2023), 1825–1867. http://dx.doi.org/10.1007/s12559-023-10155-2 doi: 10.1007/s12559-023-10155-2
    [21] P. Li, X. Peng, C. Xu, L. Han, S. Shi, Novel extended mixed controller design for bifurcation control of fractional‐order Myc/E2F/miR‐17‐92 network model concerning delay, Math. Method. Appl. Sci., 46 (2023), 18878–18898. http://dx.doi.org/10.1002/mma.9597 doi: 10.1002/mma.9597
    [22] C. Xu, M. Liao, P. Li, L. Yao, Q. Qin, Y. Shang, Chaos control for a fractional-order jerk system via time delay feedback controller and mixed controller, Fractal Fract., 5 (2021), 257. http://dx.doi.org/10.3390/fractalfract5040257 doi: 10.3390/fractalfract5040257
    [23] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. http://dx.doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [24] C. Xu, D. Mu, Z. Liu, Y. Pang, C. Aouiti, O. Tunc, et al., Bifurcation dynamics and control mechanism of a fractional-order delayed Brusselator chemical reaction model, MATCH-Commun. Math. Co., 89 (2023), 73–106. http://dx.doi.org/10.46793/match.89-1.073X doi: 10.46793/match.89-1.073X
    [25] Q. He, P. Xia, C. Hu, B. Li, Public information, actual intervention and inflation expectations, Transform. Bus. Econ., 21 (2022), 644–666.
    [26] M. Ihsanjaya, N. Susyanto, A mathematical model for policy of vaccinating recovered people in controlling the spread of COVID-19 outbreak, AIMS Mathematics, 8 (2023), 14508–14521. http://dx.doi.org/10.3934/math.2023741 doi: 10.3934/math.2023741
    [27] Y. Chen, J. Cheng, X. Jiang, X. Xu, The reconstruction and prediction algorithm of the fractional TDD for the local outbreak of COVID-19, arXiv: 2002.10302.
    [28] C. Xu, Y. Yu, Y. Chen, Z. Lu, Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model, Nonlinear Dyn., 101 (2020), 1621–1634. http://dx.doi.org/10.1007/s11071-020-05946-3 doi: 10.1007/s11071-020-05946-3
    [29] A. Shaikh, I. Shaikh, K. Nisar, A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Adv. Differ. Equ., 2020 (2020), 373. http://dx.doi.org/10.1186/s13662-020-02834-3 doi: 10.1186/s13662-020-02834-3
    [30] B. Li, Z. Eskandari, Z. Avazzadeh, Dynamical behaviors of an SIR epidemic model with discrete time, Fractal Fract., 6 (2022), 659. http://dx.doi.org/10.3390/fractalfract6110659 doi: 10.3390/fractalfract6110659
    [31] H. Qu, M. Ur Rahman, M. Arfan, Fractional model of smoking with relapse and harmonic mean type incidence rate under Caputo operator, J. Appl. Math. Comput., 69 (2023), 403–420. http://dx.doi.org/10.1007/s12190-022-01747-6 doi: 10.1007/s12190-022-01747-6
    [32] B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative, Fractals, 31 (2023), 2350050. http://dx.doi.org/10.1142/S0218348X23500500 doi: 10.1142/S0218348X23500500
    [33] Q. He, X. Zhang, P. Xia, C. Zhao, S. Li, A comparison research on dynamic characteristics of Chinese and American energy prices, J. Glob. Inf. Manag., 31 (2023), 1–16. http://dx.doi.org/10.4018/JGIM.319042 doi: 10.4018/JGIM.319042
    [34] M. Ur Rahman, Generalized fractal-fractional order problems under non-singular Mittag-Leffler kernel, Results Phys., 35 (2022), 105346. http://dx.doi.org/10.1016/j.rinp.2022.105346 doi: 10.1016/j.rinp.2022.105346
    [35] B. Li, Z. Eskandari, Dynamical analysis of a discrete-time SIR epidemic model, J. Franklin I., 360 (2023), 7989–8007. http://dx.doi.org/10.1016/j.jfranklin.2023.06.006 doi: 10.1016/j.jfranklin.2023.06.006
    [36] J. Gómez-Aguilar, J. Rosales-García, J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Fractional mechanical oscillators, Rev. Mex. Fis., 58 (2012), 348–352.
    [37] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, North Holland: Elsevier, 1998. http://dx.doi.org/10.1016/s0076-5392(99)x8001-5
    [38] W. Boyce, R. DiPrima, D. Meade, Elementary differential equations and boundary value problems, Hoboken: John Wiley & Sons, 2021.
    [39] S. Rezapour, H. Mohammadi, A. Jajarmi, A new mathematical model for Zika virus transmission, Adv. Differ. Equ., 2020 (2020), 589. http://dx.doi.org/10.1186/s13662-020-03044-7 doi: 10.1186/s13662-020-03044-7
    [40] D. Aldila, S. Khoshnaw, E. Safitri, Y. Anwar, A. Bakry, B. Samiadji, et al., A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: the case of Jakarta, Indonesia, Chaos Soliton. Fract., 139 (2020), 110042. http://dx.doi.org/10.1016/j.chaos.2020.110042 doi: 10.1016/j.chaos.2020.110042
    [41] M. Diagne, H. Rwezaura, S. Tchoumi, J. Tchuenche, A mathematical model of COVID-19 with vaccination and treatment, Comput. Math. Method. M., 2021 (2021), 1250129. http://dx.doi.org/10.1155/2021/1250129 doi: 10.1155/2021/1250129
    [42] C. Xu, Q. Cui, Z. Liu, Y. Pan, X. Cui, W. Ou, et al., Extended hybrid controller design of bifurcation in a delayed chemostat model, MATCH-Commun. Math. Co., 90 (2023), 609–648. http://dx.doi.org/10.46793/match.90-3.609X doi: 10.46793/match.90-3.609X
    [43] D. Mu, C. Xu, Z. Liu, Y. Pang, Further insight into bifurcation and hybrid control tactics of a chlorine dioxide-iodine-malonic acid chemical reaction model incorporating delays, MATCH-Commun. Math. Co., 89 (2023), 529–566. http://dx.doi.org/10.46793/match.89-3.529M doi: 10.46793/match.89-3.529M
    [44] P. Li, R. Gao, C. Xu, J. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635. http://dx.doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(798) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog