Research article

Answers to questions on Kannan's fixed point theorem in strong $ b $-metric spaces

  • Received: 10 November 2023 Revised: 21 December 2023 Accepted: 26 December 2023 Published: 09 January 2024
  • MSC : 47H10, 54H25

  • Our purpose of this paper is to answer several open questions posed by Doan (AIMS Math., 6 (2021), 7895–7908). First, we present two fixed point theorems, which are positive answers to Doan's questions. Second, we establish a new type of Riech's fixed point theorem to improve a result of Doan. Finally, we offer a straightforward example illustrating that a set-valued mapping satisfying the conditions of our fixed point theorem may has more than one fixed point.

    Citation: Peng Wang, Fei He, Xuan Liu. Answers to questions on Kannan's fixed point theorem in strong $ b $-metric spaces[J]. AIMS Mathematics, 2024, 9(2): 3671-3684. doi: 10.3934/math.2024180

    Related Papers:

  • Our purpose of this paper is to answer several open questions posed by Doan (AIMS Math., 6 (2021), 7895–7908). First, we present two fixed point theorems, which are positive answers to Doan's questions. Second, we establish a new type of Riech's fixed point theorem to improve a result of Doan. Finally, we offer a straightforward example illustrating that a set-valued mapping satisfying the conditions of our fixed point theorem may has more than one fixed point.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] R. Kannan, Some results on fixed points. II, Am. Math. Mon., 76 (1969), 405–408. https://doi.org/10.1080/00029890.1969.12000228 doi: 10.1080/00029890.1969.12000228
    [3] S. K. Chatterjea, Fixed point theorems, C.R. Acad. Bulg. Sci., 25 (1972), 727–730.
    [4] M. A. Geraghty, On contractive mappings, P. Am. Math. Soc., 40 (1973), 604–608. http://dx.doi.org/10.1090/s0002-9939-1973-0334176-5 doi: 10.1090/s0002-9939-1973-0334176-5
    [5] L. B. Ćirić, A generalization of Banach's contraction principle, P. Am. Math. Soc., 45 (1974), 267–273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2
    [6] P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math., 80 (1975), 325–330. https://doi.org/10.1007/BF01472580 doi: 10.1007/BF01472580
    [7] J. Górnicki, Various extensions of Kannan's fixed point theorem, J. Fix. Point Theory A., 20 (2018). http://dx.doi.org/10.1007/s11784-018-0500-2
    [8] T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math. Univ. Ca., 45 (2005), 45–58.
    [9] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, P. Am. Math. Soc., 136 (2008), 1861–1869. https://doi.org/10.1090/S0002-9939-07-09055-7 doi: 10.1090/S0002-9939-07-09055-7
    [10] T. Suzuki, Some comments on $\tau$-distance and existence theorems in complete metric spaces, Filomat, 37 (2023), 7981–7992. http://dx.doi.org/10.2298/FIL2323981S doi: 10.2298/FIL2323981S
    [11] N. Lu, F. He, W. S. Du, On the best areas for Kannan system and Chatterjea system in $b$-metric spaces, Optimization, 2 (2020), 973–986. http://dx.doi.org/10.1080/02331934.2020.1727902 doi: 10.1080/02331934.2020.1727902
    [12] V. Berinde, M. Pacurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, J. Comput. Appl. Math., 386 (2021), 113217. http://dx.doi.org/10.1016/j.cam.2020.113217 doi: 10.1016/j.cam.2020.113217
    [13] R. N. Mohapatra, M. A. Navascués, M. V. Sebastián, S. Verma, Iteration of operators with contractive mutual relations of Kannan type, Mathematics, 10 (2022), 2632. http://dx.doi.org/10.3390/math10152632. doi: 10.3390/math10152632
    [14] D. Debnath, A new extension of Kannan's fixed point theorem via $F$-contraction with application to integral equations, Asian-Eur. J. Math., 15 (2022). http://dx.doi.org/10.1142/S1793557122501236
    [15] L. S. Dube, S. P. Singh, On multi-valued contractions mappings, B. Math. Soc. Sci. Math., 14 (1970), 307–310.
    [16] S. F. Li, F. He, N. Lu, A unification of Geraghty type and Ćirić type fixed point theorems, Filomat, 36 (2022), 2605–2610. http://dx.doi.org/10.2298/FIL2208605L doi: 10.2298/FIL2208605L
    [17] H. Doan, A new type of Kannan's fixed point theorem in strong $b$-metric spaces, AIMS Math., 6 (2021), 7895–7908. http://dx.doi.org/10.3934/math.2021458 doi: 10.3934/math.2021458
    [18] H. Afshari, H. Aydi, E. Karaınar, On generalized $\alpha$-$\psi$-Geraghty contractions on $b$-metric spaces, Georgian Math. J., 27 (2020), 9–21. http://dx.doi.org/10.1515/gmj-2017-0063 doi: 10.1515/gmj-2017-0063
    [19] S. K. Prakasam, A. J. Gnanaprakasam, G. Mani, F. Jarad, Solving an integral equation via orthogonal generalized $\alpha$-$\Psi$-Geraghty contractions, AIMS Math., 8 (2023), 5899–5917. http://dx.doi.org/10.3934/math.2023297 doi: 10.3934/math.2023297
    [20] W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Switzerland: Springer, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5
    [21] S. Cobzas, $B$-metric spaces, fixed points and Lipschitz functions, arXiv Preprint, 2018. http://dx.doi.org/10.48550/arXiv.1802.02722
    [22] F. Turoboś, On characterization of functions preserving metric-type conditions via triangular and polygonal structures, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2011.14110
    [23] T. V. An, N. V. Dung, Answers to Kirk-Shahzad's questions on strong $b$-metric spaces, Taiwan. J. Math., 20 (2016), 1175–1184. https://doi.org/10.11650/tjm.20.2016.6359 doi: 10.11650/tjm.20.2016.6359
    [24] T. Suzuki, Basic inequality on a $b$-metric space and its applications, J. Inequal. Appl., 256 (2017). https://doi.org/10.1186/s13660-017-1528-3
    [25] C. Ionescu, Fixed point theorems for generalized classes of operators, Axioms, 69 (2023). https://doi.org/10.3390/axioms12010069
    [26] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. http://dx.doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475
    [27] A. Petrusel, G. Petrusel, J. C. Yao, New contributions to fixed point theory for multi-valued Feng-Liu contractions, Axioms, 12 (2023). http://dx.doi.org/10.3390/axioms12030274
    [28] N. Makran, A. El Haddouchi, A. B. Marzouki, A generalized common fixed point of multi-valued maps in $b$-metric space, Bol. Soc. Parana. Mat., 41 (2023), 1–9. http://dx.doi.org/10.5269/bspm.51655 doi: 10.5269/bspm.51655
    [29] B. S. Choudhury, P. Chakraborty, Fixed point problem of a multi-valued Kannan-Geraghty type contraction via $w$-distance, J. Anal., 31 (2023), 439–458. http://dx.doi.org/10.1007/s41478-022-00457-3 doi: 10.1007/s41478-022-00457-3
    [30] A. M. Al-Izeri, K. Latrach, A note on fixed point theory for multivalued mappings, Fixed Point Theory, 24 (2023), 233–240. http://dx.doi.org/10.24193/fpt-ro.2023.1.12 doi: 10.24193/fpt-ro.2023.1.12
    [31] A. Dontchev, W. Hager, An inverse mapping theorem for set-valued maps, P. Am. Math. Soc., 121 (1994), 481–489. https://doi.org/10.1090/S0002-9939-1994-1215027-7 doi: 10.1090/S0002-9939-1994-1215027-7
    [32] G. Gecheva, M. Hristov, D. Nedelcheva, M. Ruseva, B. Zlatanov, Applications of coupled fixed points for multivalued maps in the equilibrium in duopoly markets and in aquatic ecosystems, Axioms, 10 (2021), 44. https://doi.org/10.3390/axioms10020044 doi: 10.3390/axioms10020044
    [33] A. Ilchev, D. N. Arnaudova, Coupled fixed points in partial metric spaces, Geom. Integr. Quantizat., 26 (2023), 27–38. https://doi.org/10.7546/giq-26-2023-27-38 doi: 10.7546/giq-26-2023-27-38
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(977) PDF downloads(109) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog