Our purpose of this paper is to answer several open questions posed by Doan (AIMS Math., 6 (2021), 7895–7908). First, we present two fixed point theorems, which are positive answers to Doan's questions. Second, we establish a new type of Riech's fixed point theorem to improve a result of Doan. Finally, we offer a straightforward example illustrating that a set-valued mapping satisfying the conditions of our fixed point theorem may has more than one fixed point.
Citation: Peng Wang, Fei He, Xuan Liu. Answers to questions on Kannan's fixed point theorem in strong $ b $-metric spaces[J]. AIMS Mathematics, 2024, 9(2): 3671-3684. doi: 10.3934/math.2024180
Our purpose of this paper is to answer several open questions posed by Doan (AIMS Math., 6 (2021), 7895–7908). First, we present two fixed point theorems, which are positive answers to Doan's questions. Second, we establish a new type of Riech's fixed point theorem to improve a result of Doan. Finally, we offer a straightforward example illustrating that a set-valued mapping satisfying the conditions of our fixed point theorem may has more than one fixed point.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | R. Kannan, Some results on fixed points. II, Am. Math. Mon., 76 (1969), 405–408. https://doi.org/10.1080/00029890.1969.12000228 doi: 10.1080/00029890.1969.12000228 |
[3] | S. K. Chatterjea, Fixed point theorems, C.R. Acad. Bulg. Sci., 25 (1972), 727–730. |
[4] | M. A. Geraghty, On contractive mappings, P. Am. Math. Soc., 40 (1973), 604–608. http://dx.doi.org/10.1090/s0002-9939-1973-0334176-5 doi: 10.1090/s0002-9939-1973-0334176-5 |
[5] | L. B. Ćirić, A generalization of Banach's contraction principle, P. Am. Math. Soc., 45 (1974), 267–273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2 |
[6] | P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math., 80 (1975), 325–330. https://doi.org/10.1007/BF01472580 doi: 10.1007/BF01472580 |
[7] | J. Górnicki, Various extensions of Kannan's fixed point theorem, J. Fix. Point Theory A., 20 (2018). http://dx.doi.org/10.1007/s11784-018-0500-2 |
[8] | T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math. Univ. Ca., 45 (2005), 45–58. |
[9] | T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, P. Am. Math. Soc., 136 (2008), 1861–1869. https://doi.org/10.1090/S0002-9939-07-09055-7 doi: 10.1090/S0002-9939-07-09055-7 |
[10] | T. Suzuki, Some comments on $\tau$-distance and existence theorems in complete metric spaces, Filomat, 37 (2023), 7981–7992. http://dx.doi.org/10.2298/FIL2323981S doi: 10.2298/FIL2323981S |
[11] | N. Lu, F. He, W. S. Du, On the best areas for Kannan system and Chatterjea system in $b$-metric spaces, Optimization, 2 (2020), 973–986. http://dx.doi.org/10.1080/02331934.2020.1727902 doi: 10.1080/02331934.2020.1727902 |
[12] | V. Berinde, M. Pacurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, J. Comput. Appl. Math., 386 (2021), 113217. http://dx.doi.org/10.1016/j.cam.2020.113217 doi: 10.1016/j.cam.2020.113217 |
[13] | R. N. Mohapatra, M. A. Navascués, M. V. Sebastián, S. Verma, Iteration of operators with contractive mutual relations of Kannan type, Mathematics, 10 (2022), 2632. http://dx.doi.org/10.3390/math10152632. doi: 10.3390/math10152632 |
[14] | D. Debnath, A new extension of Kannan's fixed point theorem via $F$-contraction with application to integral equations, Asian-Eur. J. Math., 15 (2022). http://dx.doi.org/10.1142/S1793557122501236 |
[15] | L. S. Dube, S. P. Singh, On multi-valued contractions mappings, B. Math. Soc. Sci. Math., 14 (1970), 307–310. |
[16] | S. F. Li, F. He, N. Lu, A unification of Geraghty type and Ćirić type fixed point theorems, Filomat, 36 (2022), 2605–2610. http://dx.doi.org/10.2298/FIL2208605L doi: 10.2298/FIL2208605L |
[17] | H. Doan, A new type of Kannan's fixed point theorem in strong $b$-metric spaces, AIMS Math., 6 (2021), 7895–7908. http://dx.doi.org/10.3934/math.2021458 doi: 10.3934/math.2021458 |
[18] | H. Afshari, H. Aydi, E. Karaınar, On generalized $\alpha$-$\psi$-Geraghty contractions on $b$-metric spaces, Georgian Math. J., 27 (2020), 9–21. http://dx.doi.org/10.1515/gmj-2017-0063 doi: 10.1515/gmj-2017-0063 |
[19] | S. K. Prakasam, A. J. Gnanaprakasam, G. Mani, F. Jarad, Solving an integral equation via orthogonal generalized $\alpha$-$\Psi$-Geraghty contractions, AIMS Math., 8 (2023), 5899–5917. http://dx.doi.org/10.3934/math.2023297 doi: 10.3934/math.2023297 |
[20] | W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Switzerland: Springer, 2014. http://dx.doi.org/10.1007/978-3-319-10927-5 |
[21] | S. Cobzas, $B$-metric spaces, fixed points and Lipschitz functions, arXiv Preprint, 2018. http://dx.doi.org/10.48550/arXiv.1802.02722 |
[22] | F. Turoboś, On characterization of functions preserving metric-type conditions via triangular and polygonal structures, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2011.14110 |
[23] | T. V. An, N. V. Dung, Answers to Kirk-Shahzad's questions on strong $b$-metric spaces, Taiwan. J. Math., 20 (2016), 1175–1184. https://doi.org/10.11650/tjm.20.2016.6359 doi: 10.11650/tjm.20.2016.6359 |
[24] | T. Suzuki, Basic inequality on a $b$-metric space and its applications, J. Inequal. Appl., 256 (2017). https://doi.org/10.1186/s13660-017-1528-3 |
[25] | C. Ionescu, Fixed point theorems for generalized classes of operators, Axioms, 69 (2023). https://doi.org/10.3390/axioms12010069 |
[26] | S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. http://dx.doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475 |
[27] | A. Petrusel, G. Petrusel, J. C. Yao, New contributions to fixed point theory for multi-valued Feng-Liu contractions, Axioms, 12 (2023). http://dx.doi.org/10.3390/axioms12030274 |
[28] | N. Makran, A. El Haddouchi, A. B. Marzouki, A generalized common fixed point of multi-valued maps in $b$-metric space, Bol. Soc. Parana. Mat., 41 (2023), 1–9. http://dx.doi.org/10.5269/bspm.51655 doi: 10.5269/bspm.51655 |
[29] | B. S. Choudhury, P. Chakraborty, Fixed point problem of a multi-valued Kannan-Geraghty type contraction via $w$-distance, J. Anal., 31 (2023), 439–458. http://dx.doi.org/10.1007/s41478-022-00457-3 doi: 10.1007/s41478-022-00457-3 |
[30] | A. M. Al-Izeri, K. Latrach, A note on fixed point theory for multivalued mappings, Fixed Point Theory, 24 (2023), 233–240. http://dx.doi.org/10.24193/fpt-ro.2023.1.12 doi: 10.24193/fpt-ro.2023.1.12 |
[31] | A. Dontchev, W. Hager, An inverse mapping theorem for set-valued maps, P. Am. Math. Soc., 121 (1994), 481–489. https://doi.org/10.1090/S0002-9939-1994-1215027-7 doi: 10.1090/S0002-9939-1994-1215027-7 |
[32] | G. Gecheva, M. Hristov, D. Nedelcheva, M. Ruseva, B. Zlatanov, Applications of coupled fixed points for multivalued maps in the equilibrium in duopoly markets and in aquatic ecosystems, Axioms, 10 (2021), 44. https://doi.org/10.3390/axioms10020044 doi: 10.3390/axioms10020044 |
[33] | A. Ilchev, D. N. Arnaudova, Coupled fixed points in partial metric spaces, Geom. Integr. Quantizat., 26 (2023), 27–38. https://doi.org/10.7546/giq-26-2023-27-38 doi: 10.7546/giq-26-2023-27-38 |