We consider two general classes of multiplicative degree-based topological indices (MTIs), denoted by $ X_{\Pi, F_V}(G) = \prod_{u \in V(G)} F_V(d_u) $ and $ X_{\Pi, F_E}(G) = \prod_{uv \in E(G)} F_E(d_u, d_v) $, where $ uv $ indicates the edge of $ G $ connecting the vertices $ u $ and $ v $, $ d_u $ is the degree of the vertex $ u $, and $ F_V(x) $ and $ F_E(x, y) $ are functions of the vertex degrees. This work has three objectives: First, we follow an analytical approach to deal with a classical topic in the study of topological indices: to find inequalities that relate two MTIs between them, but also to their additive versions $ X_\Sigma(G) $. Second, we propose some statistical analysis of MTIs as a generic tool for studying average properties of random networks, extending these techniques for the first time to the context of MTIs. Finally, we perform an innovative scaling analysis of MTIs which allows us to state a scaling law that relates different random graph models.
Citation: R. Aguilar-Sánchez, J. A. Mendez-Bermudez, José M. Rodríguez, José M. Sigarreta. Multiplicative topological indices: Analytical properties and application to random networks[J]. AIMS Mathematics, 2024, 9(2): 3646-3670. doi: 10.3934/math.2024179
We consider two general classes of multiplicative degree-based topological indices (MTIs), denoted by $ X_{\Pi, F_V}(G) = \prod_{u \in V(G)} F_V(d_u) $ and $ X_{\Pi, F_E}(G) = \prod_{uv \in E(G)} F_E(d_u, d_v) $, where $ uv $ indicates the edge of $ G $ connecting the vertices $ u $ and $ v $, $ d_u $ is the degree of the vertex $ u $, and $ F_V(x) $ and $ F_E(x, y) $ are functions of the vertex degrees. This work has three objectives: First, we follow an analytical approach to deal with a classical topic in the study of topological indices: to find inequalities that relate two MTIs between them, but also to their additive versions $ X_\Sigma(G) $. Second, we propose some statistical analysis of MTIs as a generic tool for studying average properties of random networks, extending these techniques for the first time to the context of MTIs. Finally, we perform an innovative scaling analysis of MTIs which allows us to state a scaling law that relates different random graph models.
[1] | I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. https://doi.org/10.5562/cca2294 doi: 10.5562/cca2294 |
[2] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1 |
[3] | M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001 |
[4] | S. Fajtlowicz, On conjectures of Graffiti–II, Congr. Numer., 60 (1987), 187–197. |
[5] | B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z |
[6] | G. Dustigeer, H. Ali, M. I. Khan, Y. M. Chu, On multiplicative degree based topological indices for planar octahedron networks, Main Group Metal Chem., 40 (2020), 219–228. https://doi.org/10.1515/mgmc-2020-0026 doi: 10.1515/mgmc-2020-0026 |
[7] | W. Gao, M. K. Jamil, M. R. Farahani, The hyper-Zagreb index and some graph operations, J. Appl. Math. Comput., 54 (2017), 263–275. https://doi.org/10.1007/s12190-016-1008-9 doi: 10.1007/s12190-016-1008-9 |
[8] | M. Ghorbani, S. Zangi, N. Amraei, New results on symmetric division deg index, J. Appl. Math. Comput., 65 (2021), 161–176. https://doi.org/10.1007/s12190-020-01386-9 doi: 10.1007/s12190-020-01386-9 |
[9] | J. Liu, Q. Zhang, Sharp upper bounds for multiplicative Zagreb indices, MATCH Commun. Math. Comput. Chem., 68 (2012), 231–240. |
[10] | E. Mehdi, A. Iranmanesha, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68 (2012), 217–230. |
[11] | S. Mondal, K. C. Das. Zagreb connection indices in structure property modelling, J. Appl. Math. Comput., 69 (2023), 3005–3020. https://doi.org/10.1007/s12190-023-01869-5 doi: 10.1007/s12190-023-01869-5 |
[12] | M. C. Shanmukha, N. S. Basavarajappa, A. Usha, K. C. Shilpa, Novel neighbourhood redefined first and second Zagreb indices on carborundum structures, J. Appl. Math. Comput., 66 (2021), 263–276. https://doi.org/10.1007/s12190-020-01435-3 doi: 10.1007/s12190-020-01435-3 |
[13] | H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ., 16 (1984), 209–214. |
[14] | R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem., 64 (2010), 359–372. |
[15] | C. T. Martínez-Martínez, J. A. Mendez-Bermudez, J. M. Rodríguez, J. M. Sigarreta, Computational and analytical studies of the Randić index in Erdös-Rényi models, Appl. Math. Comput., 377 (2020), 125–137. https://doi.org/10.1016/j.amc.2020.125137 doi: 10.1016/j.amc.2020.125137 |
[16] | R. Aguilar-Sanchez, I. F. Herrera-Gonzalez, J. A. Mendez-Bermudez, J. M. Sigarreta, Computational properties of general indices on random networks, Symmetry, 12 (2020), 1341. https://doi.org/10.3390/sym12081341 doi: 10.3390/sym12081341 |
[17] | C. T. Martínez-Martínez, J. A. Mendez-Bermudez, J. M. Rodríguez, J. M. Sigarreta, Computational and analytical studies of the harmonic index in Erdös-Rényi models, MATCH Commun. Math. Comput. Chem., 85 (2021), 395–426. |
[18] | R. Aguilar-Sanchez, J. A. Mendez-Bermudez, J. M. Rodríguez, J. M. Sigarreta, Normalized Sombor indices as complexity measures of random networks, Entropy, 23 (2021), 976. https://doi.org/10.3390/e23080976 doi: 10.3390/e23080976 |
[19] | R. Aguilar-Sanchez, J. A. Mendez-Bermudez, F. A. Rodrigues, J. M. Sigarreta-Almira, Topological versus spectral properties of random geometric graphs, Phys. Rev. E, 102 (2020), 042306. https://doi.org/10.1103/PhysRevE.102.042306 doi: 10.1103/PhysRevE.102.042306 |
[20] | I. Gutman, I. Milovanović, E. Milovanović, Relations between ordinary and multiplicative degree-based topological indices, Filomat, 32 (2018), 3031–3042. https://doi.org/10.2298/FIL1808031G doi: 10.2298/FIL1808031G |
[21] | T. Réti, I. Gutman, Relations between ordinary and multiplicative Zagreb indices, Bull. Inter. Math. Virtual Inst., 2 (2012), 133–140. |
[22] | P. Bosch, Y. Quintana, J. M. Rodríguez, J. M. Sigarreta, Jensen-type inequalities for m-convex functions, Open Math., 20 (2022), 946–958. https://doi.org/10.1515/math-2022-0061 doi: 10.1515/math-2022-0061 |
[23] | H. Kober, On the arithmetic and geometric means and on Hölder's inequality, Proc. Amer. Math. Soc., 9 (1958), 452–459. https://doi.org/10.1090/S0002-9939-1958-0093564-7 doi: 10.1090/S0002-9939-1958-0093564-7 |
[24] | B. Zhou, I. Gutman, T. Aleksić, A note on Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem., 60 (2008), 441–446. |
[25] | M. Petrović, Sur une fonctionnelle, Publ. Math. Univ. Belgrade, 1 (1932), 146–149. |
[26] | I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb., 17 (2020), 74–85. https://doi.org/10.1016/j.akcej.2018.05.002 doi: 10.1016/j.akcej.2018.05.002 |
[27] | Z. Raza, S. Akhter, Y. Shang, Expected value of first Zagreb connection index in random cyclooctatetraene chain, random polyphenyls chain, and random chain network, Front. Chem., 10 (2023), 1067874. https://doi.org/10.3389/fchem.2022.1067874 doi: 10.3389/fchem.2022.1067874 |
[28] | Y. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881 |
[29] | R. Solomonoff, A. Rapoport, Connectivity of random nets, Bull. Math. Biophys., 13 (1951), 107–117. https://doi.org/10.1007/BF02478357 doi: 10.1007/BF02478357 |
[30] | P. Erdös, A. Rényi, On random graphs, Publ. Math. (Debrecen), 6 (1959), 290–297. |
[31] | P. Erdös, A. Rényi, On the strength of connectedness of a random graph, Acta Math. Hungarica, 12 (1961), 261–267. https://doi.org/10.1007/BF02066689 doi: 10.1007/BF02066689 |
[32] | J. Dall, M. Christensen, Random geometric graphs, Phys. Rev. E, 66 (2002), 016121. https://doi.org/10.1103/PhysRevE.66.016121 doi: 10.1103/PhysRevE.66.016121 |
[33] | M. Penrose, Random geometric graphs, Oxford: Oxford University Press, 2003. |
[34] | E. Estrada, M. Sheerin, Random rectangular graphs, Phys. Rev. E, 91 (2015), 042805. https://doi.org/10.1103/PhysRevE.91.042805 doi: 10.1103/PhysRevE.91.042805 |
[35] | S. Narayanan, S. Doss, Augmented reality using artificial neural networks - a review, Int. J. Eng. Techn., 8 (2019), 603–610. https://doi.org/10.14419/ijet.v8i4.29981 doi: 10.14419/ijet.v8i4.29981 |
[36] | P. Cipresso, I. A. C. Giglioli, I. Raya, G. Riva, The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature, Front. Psych., 9 (2011), 2086. https://doi.org/10.3389/fpsyg.2018.02086 doi: 10.3389/fpsyg.2018.02086 |