Research article Special Issues

Minimum atom-bond sum-connectivity index of trees with a fixed order and/or number of pendent vertices

  • Received: 19 October 2023 Revised: 15 November 2023 Accepted: 27 November 2023 Published: 09 January 2024
  • MSC : 05C07, 05C90

  • Let $ d_u $ be the degree of a vertex $ u $ of a graph $ G $. The atom-bond sum-connectivity (ABS) index of a graph $ G $ is the sum of the numbers $ (1-2(d_v+d_w)^{-1})^{1/2} $ over all edges $ vw $ of $ G $. This paper gives the characterization of the graph possessing the minimum ABS index in the class of all trees of a fixed number of pendent vertices; the star is the unique extremal graph in the mentioned class of graphs. The problem of determining graphs possessing the minimum ABS index in the class of all trees with $ n $ vertices and $ p $ pendent vertices is also addressed; such extremal trees have the maximum degree $ 3 $ when $ n\ge 3p-2\ge7 $, and the balanced double star is the unique such extremal tree for the case $ p = n-2 $.

    Citation: Tariq A. Alraqad, Igor Ž. Milovanović, Hicham Saber, Akbar Ali, Jaya P. Mazorodze, Adel A. Attiya. Minimum atom-bond sum-connectivity index of trees with a fixed order and/or number of pendent vertices[J]. AIMS Mathematics, 2024, 9(2): 3707-3721. doi: 10.3934/math.2024182

    Related Papers:

  • Let $ d_u $ be the degree of a vertex $ u $ of a graph $ G $. The atom-bond sum-connectivity (ABS) index of a graph $ G $ is the sum of the numbers $ (1-2(d_v+d_w)^{-1})^{1/2} $ over all edges $ vw $ of $ G $. This paper gives the characterization of the graph possessing the minimum ABS index in the class of all trees of a fixed number of pendent vertices; the star is the unique extremal graph in the mentioned class of graphs. The problem of determining graphs possessing the minimum ABS index in the class of all trees with $ n $ vertices and $ p $ pendent vertices is also addressed; such extremal trees have the maximum degree $ 3 $ when $ n\ge 3p-2\ge7 $, and the balanced double star is the unique such extremal tree for the case $ p = n-2 $.



    加载中


    [1] J. L. Gross, J. Yellen, M. Anderson, Graph theory and its applications, New York: CRC Press, 2018. https://doi.org/10.1201/9780429425134
    [2] S. Wagner, H. Wang, Introduction to chemical graph theory, Boca Raton: CRC Press, 2018.
    [3] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
    [4] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. http://dx.doi.org/10.5562/cca2294 doi: 10.5562/cca2294
    [5] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 59 (2008), 127–156.
    [6] M. Randić, The connectivity index 25 years after, J. Mol. Graph. Model., 20 (2001), 19–35. https://doi.org/10.1016/S1093-3263(01)00098-5 doi: 10.1016/S1093-3263(01)00098-5
    [7] I. Gutman, B. Furtula, Recent results in the theory of Randić index, Math. Chem. Monogr., 2008.
    [8] X. Li, I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, Univ. Kragujevac, 2006.
    [9] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. Sec. A, 37 (1998), 849–855.
    [10] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463 (2008), 422–425. https://doi.org/10.1016/j.cplett.2008.08.074 doi: 10.1016/j.cplett.2008.08.074
    [11] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
    [12] A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs: A review over extremal results and bounds, Discrete Math. Lett., 5 (2021), 68–93. http://dx.doi.org/10.47443/dml.2020.0069 doi: 10.47443/dml.2020.0069
    [13] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalization: Extremal results and bounds, MATCH Commun. Math. Comput. Chem., 81 (2019), 249–311.
    [14] A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1 doi: 10.1007/s10910-022-01403-1
    [15] Y. Tang, D. B. West, B. Zhou, Extremal problems for degree-based topological indices, Discrete Appl. Math., 203 (2016), 134–143. https://doi.org/10.1016/j.dam.2015.09.011 doi: 10.1016/j.dam.2015.09.011
    [16] A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, Electron. J. Math., 5 (2023), 1–7. https://doi.org/10.47443/ejm.2022.039 doi: 10.47443/ejm.2022.039
    [17] J. A. Bondy, U. S. R. Murty, Graph theory, Springer, 2008.
    [18] J. Du, X. Sun, On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves, Appl. Math. Comp., 464 (2024), 128390. https://doi.org/10.1016/j.amc.2023.128390 doi: 10.1016/j.amc.2023.128390
    [19] S. Noureen, A. Ali, Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves, Discrete Math. Lett., 12 (2023), 26–28. https://doi.org/10.47443/dml.2023.016
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1193) PDF downloads(101) Cited by(5)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog