Let $ d_u $ be the degree of a vertex $ u $ of a graph $ G $. The atom-bond sum-connectivity (ABS) index of a graph $ G $ is the sum of the numbers $ (1-2(d_v+d_w)^{-1})^{1/2} $ over all edges $ vw $ of $ G $. This paper gives the characterization of the graph possessing the minimum ABS index in the class of all trees of a fixed number of pendent vertices; the star is the unique extremal graph in the mentioned class of graphs. The problem of determining graphs possessing the minimum ABS index in the class of all trees with $ n $ vertices and $ p $ pendent vertices is also addressed; such extremal trees have the maximum degree $ 3 $ when $ n\ge 3p-2\ge7 $, and the balanced double star is the unique such extremal tree for the case $ p = n-2 $.
Citation: Tariq A. Alraqad, Igor Ž. Milovanović, Hicham Saber, Akbar Ali, Jaya P. Mazorodze, Adel A. Attiya. Minimum atom-bond sum-connectivity index of trees with a fixed order and/or number of pendent vertices[J]. AIMS Mathematics, 2024, 9(2): 3707-3721. doi: 10.3934/math.2024182
Let $ d_u $ be the degree of a vertex $ u $ of a graph $ G $. The atom-bond sum-connectivity (ABS) index of a graph $ G $ is the sum of the numbers $ (1-2(d_v+d_w)^{-1})^{1/2} $ over all edges $ vw $ of $ G $. This paper gives the characterization of the graph possessing the minimum ABS index in the class of all trees of a fixed number of pendent vertices; the star is the unique extremal graph in the mentioned class of graphs. The problem of determining graphs possessing the minimum ABS index in the class of all trees with $ n $ vertices and $ p $ pendent vertices is also addressed; such extremal trees have the maximum degree $ 3 $ when $ n\ge 3p-2\ge7 $, and the balanced double star is the unique such extremal tree for the case $ p = n-2 $.
[1] | J. L. Gross, J. Yellen, M. Anderson, Graph theory and its applications, New York: CRC Press, 2018. https://doi.org/10.1201/9780429425134 |
[2] | S. Wagner, H. Wang, Introduction to chemical graph theory, Boca Raton: CRC Press, 2018. |
[3] | M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001 |
[4] | I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. http://dx.doi.org/10.5562/cca2294 doi: 10.5562/cca2294 |
[5] | X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 59 (2008), 127–156. |
[6] | M. Randić, The connectivity index 25 years after, J. Mol. Graph. Model., 20 (2001), 19–35. https://doi.org/10.1016/S1093-3263(01)00098-5 doi: 10.1016/S1093-3263(01)00098-5 |
[7] | I. Gutman, B. Furtula, Recent results in the theory of Randić index, Math. Chem. Monogr., 2008. |
[8] | X. Li, I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, Univ. Kragujevac, 2006. |
[9] | E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. Sec. A, 37 (1998), 849–855. |
[10] | E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463 (2008), 422–425. https://doi.org/10.1016/j.cplett.2008.08.074 doi: 10.1016/j.cplett.2008.08.074 |
[11] | B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z |
[12] | A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs: A review over extremal results and bounds, Discrete Math. Lett., 5 (2021), 68–93. http://dx.doi.org/10.47443/dml.2020.0069 doi: 10.47443/dml.2020.0069 |
[13] | A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalization: Extremal results and bounds, MATCH Commun. Math. Comput. Chem., 81 (2019), 249–311. |
[14] | A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1 doi: 10.1007/s10910-022-01403-1 |
[15] | Y. Tang, D. B. West, B. Zhou, Extremal problems for degree-based topological indices, Discrete Appl. Math., 203 (2016), 134–143. https://doi.org/10.1016/j.dam.2015.09.011 doi: 10.1016/j.dam.2015.09.011 |
[16] | A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, Electron. J. Math., 5 (2023), 1–7. https://doi.org/10.47443/ejm.2022.039 doi: 10.47443/ejm.2022.039 |
[17] | J. A. Bondy, U. S. R. Murty, Graph theory, Springer, 2008. |
[18] | J. Du, X. Sun, On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves, Appl. Math. Comp., 464 (2024), 128390. https://doi.org/10.1016/j.amc.2023.128390 doi: 10.1016/j.amc.2023.128390 |
[19] | S. Noureen, A. Ali, Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves, Discrete Math. Lett., 12 (2023), 26–28. https://doi.org/10.47443/dml.2023.016 |