The main aim of this paper is to construct a mathematical model for the spread of SARS-CoV-2 infection. We discuss the modified COVID-19 and change the model to fractional order form based on the Caputo-Fabrizio derivative. Also several definitions and theorems of fractional calculus, fuzzy theory and Laplace transform are illustrated. The existence and uniqueness of the solution of the model are proved based on the Banach's unique fixed point theory. Moreover Hyers-Ulam stability analysis is studied. The obtained results show the efficiency and accuracy of the model.
Citation: Murugesan Sivashankar, Sriramulu Sabarinathan, Vediyappan Govindan, Unai Fernandez-Gamiz, Samad Noeiaghdam. Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional differential equation[J]. AIMS Mathematics, 2023, 8(2): 2720-2735. doi: 10.3934/math.2023143
The main aim of this paper is to construct a mathematical model for the spread of SARS-CoV-2 infection. We discuss the modified COVID-19 and change the model to fractional order form based on the Caputo-Fabrizio derivative. Also several definitions and theorems of fractional calculus, fuzzy theory and Laplace transform are illustrated. The existence and uniqueness of the solution of the model are proved based on the Banach's unique fixed point theory. Moreover Hyers-Ulam stability analysis is studied. The obtained results show the efficiency and accuracy of the model.
[1] | D. Baleanu, H. Mohammadi, S. A. Rezapour, A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative, Adv. Differ. Equ., 299 (2020), 1–27. https://doi.org/10.1186/s13662-020-02762-2 doi: 10.1186/s13662-020-02762-2 |
[2] | Q. Li, X. Guan, Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, New Engl. J. Med., 382 (2020), 1199–1207. |
[3] | R. M. Ganji, H. Jafari, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 130 (2020), 109405. https://doi.org/10.1016/j.chaos.2019.109405 doi: 10.1016/j.chaos.2019.109405 |
[4] | F. Saldana, J. A. Camacho-Gutierrez, A. Korobeinikov, Impact of a cost functional on the optimal control and the cost-effectiveness: Control of a spreading infection as a case study, Math. Optim. Control, 2020. https://doi.org/10.48550/arXiv.2011.06648 |
[5] | M. Shera, K. Shaha, H. Khan, Khan, Z. Khan, A computational and theoretical modeling of the transmission dynamics of novel COVID-19 under Mittag-Leffler power law, Alex. Eng. J., 59 (2020), 3133–3147. https://doi.org/10.1016/j.aej.2020.07.014 doi: 10.1016/j.aej.2020.07.014 |
[6] | S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int. Stat. Rev., 62 (1994), 229–243. |
[7] | K. Hasib, J. Gomez-Aguilar, J. Abdeljawad, Existence results and stability criteria for ABC-fuzzy-volterra integrodiferential equation, Fractals, 28 (2020). https://doi.org/10.1142/S0218348X20400484 doi: 10.1142/S0218348X20400484 |
[8] | D. Lu, M. Suleman, J. U. Rahman, S. Noeiaghdam, G. Murtaza, Numerical simulation of fractional zakharov-kuznetsov equation for description of temporal discontinuity using projected differential transform method, Complexity, 2021 (2021). https://doi.org/10.1155/2021/9998610 doi: 10.1155/2021/9998610 |
[9] | M. Hedayati, R. Ezzati, S. Noeiaghdam, New procedures of a fractional order model of novel coronavirus (COVID-19) outbreak via wavelets method, Axioms, 10 (2021). https://doi.org/10.3390/axioms10020122 doi: 10.3390/axioms10020122 |
[10] | S. Noeiaghdam, A. Dreglea, H. Isik, M. Suleman, Comparative study between discrete stochastic arithmetic and floating-point arithmetic to validate the results of fractional order model of malaria infection, Mathematics, 9 (2021). https://doi.org/10.3390/math9121435 doi: 10.3390/math9121435 |
[11] | S. Noeiaghdam, S. Micula, J. J. Nieto, Novel technique to control the accuracy of a nonlinear fractional order model of COVID-19: Application of the cestac method and the cadna library, Mathematics, 9 (2021). https://doi.org/10.3390/math9121321 doi: 10.3390/math9121321 |
[12] | S. Noeiaghdam, D. Sidorov, Caputo-Fabrizio fractional derivative to solve the fractional model of energy supply-demand system, Math. Model. Eng. Probl., 7 (2020), 359–367. https://doi.org/10.18280/mmep.070305 doi: 10.18280/mmep.070305 |
[13] | R. S. Palais, A simple proof of the banach contraction principle, J. Fix. Point Theory A., 2 (2007), 221–223. https://doi.org/10.1007/s11784-007-0041-6 doi: 10.1007/s11784-007-0041-6 |
[14] | C. Ravichandran, K. Logeswari, New results on existence in the framework of atangana-baleanu derivative for fractional integro-differential equations, Chaos Solution. Fract., 125 (2019), 194–200. https://doi.org/10.1016/j.chaos.2019.05.014 doi: 10.1016/j.chaos.2019.05.014 |
[15] | A. Hussain, M. Adee, Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model, Adv. Differ. Equ., 384 (2020), 1–9. https://doi.org/10.1186/s13662-020-02845-0 doi: 10.1186/s13662-020-02845-0 |
[16] | S. Ahmad, A. Ullah, K. Shah, S. Salahshour, A. Ahmadian, T. Ciano, Fuzzy fractional-order model of the novel coronavirus, Adv. Differ. Equ., 472 (2020), 1–17. https://doi.org/10.1186/s13662-020-02934-0 doi: 10.1186/s13662-020-02934-0 |
[17] | A. Khan, H. Khan, J. F. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. https://doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026 |
[18] | P. Verma, M. Kumar, Analysis of a novel coronavirus (2019-nCOV) system with variable Caputo-Fabrizio fractional order, Chaos Soliton. Fract., 142 (2021), 110451. https://doi.org/10.1016/j.chaos.2020.110451 doi: 10.1016/j.chaos.2020.110451 |
[19] | H. Khan, C. Tunc, Green function's properties and existence theorems for nonlinear singular delay-fractional differential equations, Discrete Cont. Dyn.-S, 13 (2020), 2475–2487. https://doi.org/10.3934/dcdss.2020139 doi: 10.3934/dcdss.2020139 |
[20] | J. Wang, S. Zhang, The existence of solutions for nonlinear fractional boundary value problem and its lyapunov-type inequality involving conformable variable-order derivative, J. Inequal. Appl., 86 (2020), 1–12. https://doi.org/10.1186/s13660-020-02351-7 doi: 10.1186/s13660-020-02351-7 |
[21] | J. W. Green, F. A. Valentine, On the arzela-ascoli theorem, Math. Mag., 34 (1961), 199–202. https://doi.org/10.1080/0025570X.1961.11975217 doi: 10.1080/0025570X.1961.11975217 |
[22] | M. L. Diagne, H. Rwezaura, S. Y. Tchoumi, J. M. Tchuenche, A mathematical model of COVID-19 with vaccination and treatment, Comput. Math. Meth. Med., 2021 (2021). https://doi.org/10.1155/2021/1250129 doi: 10.1155/2021/1250129 |
[23] | B. Buonomo, Analysis of a malaria model with mosquito host choice and bed-net control, Int. J. Biomath., 8 (2015), 1550077. https://doi.org/10.1142/S1793524515500771 doi: 10.1142/S1793524515500771 |
[24] | M. O. Adewole, A. Onifade, F. A. Abdullah, F. Kasali, A. I. M. Ismail, Modeling the dynamics of COVID-19 in Nigeria, Int. J. Appl. Comput. Math., 7 (2021), 1–25. https://doi.org/10.1007/s40819-021-01014-5 doi: 10.1007/s40819-021-01014-5 |
[25] | S. M. Garba, J. M. Lubuma, B. Tsanou, Modeling the transmission dynamics of the COVID-19 pandemic in south africa, Math. Biosci., 328 (2020), 108441. https://doi.org/10.1016/j.mbs.2020.108441 doi: 10.1016/j.mbs.2020.108441 |
[26] | A. Babaei, H. Jafari, S. Banihashemi, M. Ahmadi, Mathematical analysis of a stochastic model for spread of coronavirus, Chaos Soliton. Fract., 145 (2021), 110788. https://doi.org/10.1016/j.chaos.2021.110788 doi: 10.1016/j.chaos.2021.110788 |
[27] | B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions, J. Clin. Med., 9 (2020), 1–13. https://doi.org/10.3390/jcm9020462 doi: 10.3390/jcm9020462 |
[28] | C. T. Deressa, Y. O. Mussa, G. F. Duressa, Optimal control and sensitivity analysis for transmission dynamics of coronavirus, Results Phys., 19 (2020), 103642. https://doi.org/10.1016/j.rinp.2020.103642 doi: 10.1016/j.rinp.2020.103642 |
[29] | M. Q. Shakhany, K. Salimifard, Predicting the dynamical behavior of COVID-19 epidemic and the effect of control strategies, Chaos Soliton. Fract., 146 (2021), 110823. https://doi.org/10.1016/j.chaos.2021.110823 doi: 10.1016/j.chaos.2021.110823 |
[30] | R. K. Upadhyay, A. K. Pal, S. Kumari, R. Parimita, Dynamics of an seir epidemic model with nonlinear incidence and treatment rates, Nonlinear Dyn., 96 (2019), 2351–2368. https://doi.org/10.1007/s11071-019-04926-6 doi: 10.1007/s11071-019-04926-6 |
[31] | S. Deepa, A. Ganesh, V. Ibrahimov, S. S. Santra, V. Govindan, K. M. Khedher, et al., Fractional Fourier transform to stability analysis of fractional differential equations with Prabhakar derivatives, Azerbaijan J. Math., 12 (2022). |
[32] | F. Ghomanjani, S. Noeiaghdam, Application of Said Ball curve for solving fractional differential algebraic equations, Mathematics, 9 (2021). https://doi.org/10.3390/math9161926 doi: 10.3390/math9161926 |
[33] | T. Allahviranloo, Z. Noeiaghdam, S. Noeiaghdam, Juan J. Nieto, A fuzzy method for solving fuzzy fractional differential equations based on the generalized fuzzy Taylor expansion, Mathematics, 8 (2020), 2166. https://doi.org/10.3390/math8122166 doi: 10.3390/math8122166 |
[34] | I. A. Mirza, D. Vieru, Fundamental solutions to advection-diffusion equation with time-fractional Caputo-Fabrizio derivative, Comput. Math. Appl., 73 (2017), 1–10. https://doi.org/10.1016/j.camwa.2016.09.026 doi: 10.1016/j.camwa.2016.09.026 |
[35] | I. A. Mirza, M. S. Akram, N. A. Shah, W. Imtiaz, J. D. Chung, Analytical solutions to the advection-diffusion equation with Atangana-Baleanu time-fractional derivative and a concentrated loading, Alex. Eng. J., 60 (2021), 1199–1208. https://doi.org/10.1016/j.aej.2020.10.043 doi: 10.1016/j.aej.2020.10.043 |
[36] | L. Wei, W. Li, Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative, Math. Comput. Simul., 188 (2021), 280–290. https://doi.org/10.1016/j.matcom.2021.04.001 doi: 10.1016/j.matcom.2021.04.001 |
[37] | M. Alqhtani, K. M. Owolabi, K. M. Saad, E. Pindza, Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology, Chaos Soliton. Fract., 161 (2022), 112394. https://doi.org/10.1016/j.chaos.2022.112394 doi: 10.1016/j.chaos.2022.112394 |
[38] | H. M. Srivastava, K. M. Saad, W. M. Hamanah, Certain new models of the Multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de vries equations, Mathematics, 10 (2022), 1089. https://doi.org/10.3390/math10071089 doi: 10.3390/math10071089 |
[39] | A. Selvam, S. Sabarinathan, S. Noeiaghdam, V. Govindan, Fractional Fourier transform and Ulam stability of fractional differentialnequation with fractional Caputo-type derivative, J.Funct. Space., 2022 (2022). https://doi.org/10.1155/2022/3777566 doi: 10.1155/2022/3777566 |
[40] | A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Results Phys., 22 (2021). https://doi.org/10.1016/j.rinp.2021.103888 doi: 10.1016/j.rinp.2021.103888 |
[41] | I. Ahmed, I. A. Baba, A. Yusuf, P. Kumam, W. Kumam, Analysis of Caputo fractional-order model for COVID-19 with lockdown, Adv. Differ. Equ., 394 (2020), 1–14. https://doi.org/10.1186/s13662-020-02853-0 doi: 10.1186/s13662-020-02853-0 |
[42] | M. Sher, K. Shah, Z. A. Khan, H. Khan, A. Khan, Computational and theoretical modeling of the transmission dynamics of novel COVID-19 under Mittag-Leffler power law, Alex. Eng. J., 59 (2020), 3133–3147. https://doi.org/10.1016/j.aej.2020.07.014 doi: 10.1016/j.aej.2020.07.014 |
[43] | H. Khan, F. Ahmad, O. Tunç, M. Idrees, On fractal-fractional Covid-19 mathematical model, Chaos Soliton. Fract., 157 (2022), 111937. https://doi.org/10.1016/j.chaos.2022.111937 doi: 10.1016/j.chaos.2022.111937 |
[44] | X. P. Li, H. Al Bayatti, A. Din, A. Zeb, A vigorous study of fractional order COVID-19 model via ABC derivatives, Alex. Eng. J., 29 (2021), 104737. https://doi.org/10.1016/j.rinp.2021.104737 doi: 10.1016/j.rinp.2021.104737 |