Research article

Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels

  • Received: 17 July 2022 Revised: 19 September 2022 Accepted: 10 October 2022 Published: 09 November 2022
  • MSC : 47B33, 47A53

  • For any real $ \beta $ let $ H^2_\beta $ be the Hardy-Sobolev space on the unit disc $ {\mathbb D} $. $ H^2_\beta $ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $ \beta > 1/2 $. In this paper, we prove that $ C_{\varphi } $ has dense range in $ H_{\beta }^{2} $ if and only if the polynomials are dense in a certain Dirichlet space of the domain $ \varphi({\mathbb D}) $ for $ 1/2 < \beta < 1 $. It follows that if the range of $ C_{\varphi } $ is dense in $ H_{\beta }^{2} $, then $ \varphi $ is a weak-star generator of $ H^{\infty} $, although the conclusion is false for the classical Dirichlet space $ \mathfrak{D} $. Moreover, we study the relation between the density of the range of $ C_{\varphi } $ and the cyclic vector of the multiplier $ M_{\varphi}^{\beta}. $

    Citation: Li He. Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels[J]. AIMS Mathematics, 2023, 8(2): 2708-2719. doi: 10.3934/math.2023142

    Related Papers:

  • For any real $ \beta $ let $ H^2_\beta $ be the Hardy-Sobolev space on the unit disc $ {\mathbb D} $. $ H^2_\beta $ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $ \beta > 1/2 $. In this paper, we prove that $ C_{\varphi } $ has dense range in $ H_{\beta }^{2} $ if and only if the polynomials are dense in a certain Dirichlet space of the domain $ \varphi({\mathbb D}) $ for $ 1/2 < \beta < 1 $. It follows that if the range of $ C_{\varphi } $ is dense in $ H_{\beta }^{2} $, then $ \varphi $ is a weak-star generator of $ H^{\infty} $, although the conclusion is false for the classical Dirichlet space $ \mathfrak{D} $. Moreover, we study the relation between the density of the range of $ C_{\varphi } $ and the cyclic vector of the multiplier $ M_{\varphi}^{\beta}. $



    加载中


    [1] A. Abkar, G. Cao, K. Zhu, The commutant of some shift operators, Complex Anal. Oper. Th., 14 (2020), 58–69. https://doi.org/10.1007/s11785-020-01015-0 doi: 10.1007/s11785-020-01015-0
    [2] J. Akeroyd, S. Fulmer, Closed-range composition operators on weighted Bergman spaces, Integr. Equat. Oper. Th., 72 (2012), 103–114. https://doi.org/10.1007/s00020-011-1912-1 doi: 10.1007/s00020-011-1912-1
    [3] P. Bourdon, Density of the polynomials in Bergman spaces, Pac. J. Math., 130 (1987), 215–221. https://doi.org/10.2140/pjm.1987.130.215 doi: 10.2140/pjm.1987.130.215
    [4] P. Bourdon, Fredholm multiplication and composition operators on the Hardy space, Integr. Equat. Oper. Th., 13 (1990), 607–610. https://doi.org/10.1007/BF01210404 doi: 10.1007/BF01210404
    [5] G. Cao, Composition and Toeplitz operators on general domains, Tohoku Math. J., 57 (2005), 11–22. https://doi.org/10.2748/tmj/1113234831 doi: 10.2748/tmj/1113234831
    [6] G. Cao, L. He, K. H. Zhu, Spectral theory of multiplication operators on Hardy-Sobolev spaces, J. Funct. Anal., 275 (2018), 1259–1279. https://doi.org/10.1016/j.jfa.2018.05.017 doi: 10.1016/j.jfa.2018.05.017
    [7] G. Cao, L. He, K. H. Zhu, Polynomial approximation and composition operators, Proc. Amer. Math. Soc., 149 (2021), 3715–3724. https://doi.org/10.1090/proc/14455 doi: 10.1090/proc/14455
    [8] G. Cao, S. Sun, On composition operators on $H^p$-spaces in several variables, Acta Math. Sin., 13 (1997), 281–288.
    [9] J. Cima, A theorem on composition operators, Lecture Notes in Mathematics, Springer-Verlag, 1976, 21–24.
    [10] J. Cima, J. Thomson, W. Wogen, On some properties of composition operators, Indiana Univ. Math. J., 24 (1974), 215–220. https://doi.org/10.1512/iumj.1975.24.24018 doi: 10.1512/iumj.1975.24.24018
    [11] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, Florida, 1995.
    [12] P. Duren, A. Schuster, Bergman spaces, Mathematical Surveys and monographs, Amer. Math. Soc., 2004.
    [13] P. Galindo, T. Gamelin, M. Lindstrom, Fredholm composition operators on algebras of analytic functions on Banach spaces, J. Funct. Anal., 258 (2010), 1504–1512. https://doi.org/10.1016/j.jfa.2009.10.020 doi: 10.1016/j.jfa.2009.10.020
    [14] J. Garnett, Bounded analytic functions, Academic Press, 1981.
    [15] A. Kumar, Fredholm composition operators, Proc. Amer. Math. Soc., 79 (1980), 233–236. https://doi.org/10.1090/S0002-9939-1980-0565345-0 doi: 10.1090/S0002-9939-1980-0565345-0
    [16] B. MacCluer, Fredholm composition operators, Proc. Amer. Math. Soc., 125 (1997), 163–166. https://doi.org/10.1090/S0002-9939-97-03743-X doi: 10.1090/S0002-9939-97-03743-X
    [17] S. Mergeljan, A. Talmadjan, On completeness in a class of non-Jordan regions, Amer. Math. Soc. Transl., 35 (1964), 79–94. https://doi.org/10.1090/trans2/035 doi: 10.1090/trans2/035
    [18] O. Hatori, Fredholm composition operators on spaces of holomorphic functions, Integr. Equat. Oper. Th., 18 (1994), 202–210. https://doi.org/10.1007/BF01192459 doi: 10.1007/BF01192459
    [19] J. Ortega, J. Fábrega, Multipliers in Hardy-Sobolev spaces, Integr. Equat. Oper. Th., 55 (2006), 535–560. https://doi.org/10.1007/s00020-005-1403-3 doi: 10.1007/s00020-005-1403-3
    [20] J. Pau, P. Perez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl., 401 (2013), 682–694. https://doi.org/10.1016/j.jmaa.2012.12.052 doi: 10.1016/j.jmaa.2012.12.052
    [21] R. Roan, Composition operators on $H^{p}$ with dense range, Indiana Univ. Math. J., 27 (1978), 159–162.
    [22] W. Rudin, Function theory in the unit ball of $ {\mathbb C}^n$, Springer, New York, 1980.
    [23] D. Sarason, Weak-star generators of $H^{\infty}$, Pac. J. Math., 17 (1966), 519–528.
    [24] J. Shapiro, Composition operators and classical function theory, Springer Science+Business Media, LLC, 1991.
    [25] A. Shields, Weighted shift operators and analytic function theory, Math. Surv., 13 (1974), 48–128.
    [26] R. Zhao, K. Zhu, Theory of Bergman spaces on the unit ball in $ {\mathbb C}^n$, Mem. Soc. Math., France, 2008.
    [27] K. Zhu, Operator theory in function spaces, American Mathematical Society, 2007.
    [28] K. Zhu, Ten problems, A talk at a meeting on operator theory in Jiaxin, China.
    [29] N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc., 126 (1998), 2013–2023.
    [30] N. Zorboska, Composition operators with closed range, Trans. Amer. Math. Soc., 344 (1994), 791–801. https://doi.org/10.1090/S0002-9947-1994-1236226-9 doi: 10.1090/S0002-9947-1994-1236226-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1144) PDF downloads(83) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog