For any real $ \beta $ let $ H^2_\beta $ be the Hardy-Sobolev space on the unit disc $ {\mathbb D} $. $ H^2_\beta $ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $ \beta > 1/2 $. In this paper, we prove that $ C_{\varphi } $ has dense range in $ H_{\beta }^{2} $ if and only if the polynomials are dense in a certain Dirichlet space of the domain $ \varphi({\mathbb D}) $ for $ 1/2 < \beta < 1 $. It follows that if the range of $ C_{\varphi } $ is dense in $ H_{\beta }^{2} $, then $ \varphi $ is a weak-star generator of $ H^{\infty} $, although the conclusion is false for the classical Dirichlet space $ \mathfrak{D} $. Moreover, we study the relation between the density of the range of $ C_{\varphi } $ and the cyclic vector of the multiplier $ M_{\varphi}^{\beta}. $
Citation: Li He. Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels[J]. AIMS Mathematics, 2023, 8(2): 2708-2719. doi: 10.3934/math.2023142
For any real $ \beta $ let $ H^2_\beta $ be the Hardy-Sobolev space on the unit disc $ {\mathbb D} $. $ H^2_\beta $ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $ \beta > 1/2 $. In this paper, we prove that $ C_{\varphi } $ has dense range in $ H_{\beta }^{2} $ if and only if the polynomials are dense in a certain Dirichlet space of the domain $ \varphi({\mathbb D}) $ for $ 1/2 < \beta < 1 $. It follows that if the range of $ C_{\varphi } $ is dense in $ H_{\beta }^{2} $, then $ \varphi $ is a weak-star generator of $ H^{\infty} $, although the conclusion is false for the classical Dirichlet space $ \mathfrak{D} $. Moreover, we study the relation between the density of the range of $ C_{\varphi } $ and the cyclic vector of the multiplier $ M_{\varphi}^{\beta}. $
[1] | A. Abkar, G. Cao, K. Zhu, The commutant of some shift operators, Complex Anal. Oper. Th., 14 (2020), 58–69. https://doi.org/10.1007/s11785-020-01015-0 doi: 10.1007/s11785-020-01015-0 |
[2] | J. Akeroyd, S. Fulmer, Closed-range composition operators on weighted Bergman spaces, Integr. Equat. Oper. Th., 72 (2012), 103–114. https://doi.org/10.1007/s00020-011-1912-1 doi: 10.1007/s00020-011-1912-1 |
[3] | P. Bourdon, Density of the polynomials in Bergman spaces, Pac. J. Math., 130 (1987), 215–221. https://doi.org/10.2140/pjm.1987.130.215 doi: 10.2140/pjm.1987.130.215 |
[4] | P. Bourdon, Fredholm multiplication and composition operators on the Hardy space, Integr. Equat. Oper. Th., 13 (1990), 607–610. https://doi.org/10.1007/BF01210404 doi: 10.1007/BF01210404 |
[5] | G. Cao, Composition and Toeplitz operators on general domains, Tohoku Math. J., 57 (2005), 11–22. https://doi.org/10.2748/tmj/1113234831 doi: 10.2748/tmj/1113234831 |
[6] | G. Cao, L. He, K. H. Zhu, Spectral theory of multiplication operators on Hardy-Sobolev spaces, J. Funct. Anal., 275 (2018), 1259–1279. https://doi.org/10.1016/j.jfa.2018.05.017 doi: 10.1016/j.jfa.2018.05.017 |
[7] | G. Cao, L. He, K. H. Zhu, Polynomial approximation and composition operators, Proc. Amer. Math. Soc., 149 (2021), 3715–3724. https://doi.org/10.1090/proc/14455 doi: 10.1090/proc/14455 |
[8] | G. Cao, S. Sun, On composition operators on $H^p$-spaces in several variables, Acta Math. Sin., 13 (1997), 281–288. |
[9] | J. Cima, A theorem on composition operators, Lecture Notes in Mathematics, Springer-Verlag, 1976, 21–24. |
[10] | J. Cima, J. Thomson, W. Wogen, On some properties of composition operators, Indiana Univ. Math. J., 24 (1974), 215–220. https://doi.org/10.1512/iumj.1975.24.24018 doi: 10.1512/iumj.1975.24.24018 |
[11] | C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, Florida, 1995. |
[12] | P. Duren, A. Schuster, Bergman spaces, Mathematical Surveys and monographs, Amer. Math. Soc., 2004. |
[13] | P. Galindo, T. Gamelin, M. Lindstrom, Fredholm composition operators on algebras of analytic functions on Banach spaces, J. Funct. Anal., 258 (2010), 1504–1512. https://doi.org/10.1016/j.jfa.2009.10.020 doi: 10.1016/j.jfa.2009.10.020 |
[14] | J. Garnett, Bounded analytic functions, Academic Press, 1981. |
[15] | A. Kumar, Fredholm composition operators, Proc. Amer. Math. Soc., 79 (1980), 233–236. https://doi.org/10.1090/S0002-9939-1980-0565345-0 doi: 10.1090/S0002-9939-1980-0565345-0 |
[16] | B. MacCluer, Fredholm composition operators, Proc. Amer. Math. Soc., 125 (1997), 163–166. https://doi.org/10.1090/S0002-9939-97-03743-X doi: 10.1090/S0002-9939-97-03743-X |
[17] | S. Mergeljan, A. Talmadjan, On completeness in a class of non-Jordan regions, Amer. Math. Soc. Transl., 35 (1964), 79–94. https://doi.org/10.1090/trans2/035 doi: 10.1090/trans2/035 |
[18] | O. Hatori, Fredholm composition operators on spaces of holomorphic functions, Integr. Equat. Oper. Th., 18 (1994), 202–210. https://doi.org/10.1007/BF01192459 doi: 10.1007/BF01192459 |
[19] | J. Ortega, J. Fábrega, Multipliers in Hardy-Sobolev spaces, Integr. Equat. Oper. Th., 55 (2006), 535–560. https://doi.org/10.1007/s00020-005-1403-3 doi: 10.1007/s00020-005-1403-3 |
[20] | J. Pau, P. Perez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl., 401 (2013), 682–694. https://doi.org/10.1016/j.jmaa.2012.12.052 doi: 10.1016/j.jmaa.2012.12.052 |
[21] | R. Roan, Composition operators on $H^{p}$ with dense range, Indiana Univ. Math. J., 27 (1978), 159–162. |
[22] | W. Rudin, Function theory in the unit ball of $ {\mathbb C}^n$, Springer, New York, 1980. |
[23] | D. Sarason, Weak-star generators of $H^{\infty}$, Pac. J. Math., 17 (1966), 519–528. |
[24] | J. Shapiro, Composition operators and classical function theory, Springer Science+Business Media, LLC, 1991. |
[25] | A. Shields, Weighted shift operators and analytic function theory, Math. Surv., 13 (1974), 48–128. |
[26] | R. Zhao, K. Zhu, Theory of Bergman spaces on the unit ball in $ {\mathbb C}^n$, Mem. Soc. Math., France, 2008. |
[27] | K. Zhu, Operator theory in function spaces, American Mathematical Society, 2007. |
[28] | K. Zhu, Ten problems, A talk at a meeting on operator theory in Jiaxin, China. |
[29] | N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc., 126 (1998), 2013–2023. |
[30] | N. Zorboska, Composition operators with closed range, Trans. Amer. Math. Soc., 344 (1994), 791–801. https://doi.org/10.1090/S0002-9947-1994-1236226-9 doi: 10.1090/S0002-9947-1994-1236226-9 |