In this paper, we study $ n $-dimensional Hardy operator and its dual in mixed radial-angular spaces on Heisenberg group and obtain their sharp bounds by using the rotation method. Furthermore, the sharp bounds of $ n $-dimensional weighted Hardy operator and weighted Cesàro operator are also obtained.
Citation: Zhongci Hang, Dunyan Yan, Xiang Li. Mixed radial-angular bounds for Hardy-type operators on Heisenberg group[J]. AIMS Mathematics, 2023, 8(9): 21022-21032. doi: 10.3934/math.20231070
In this paper, we study $ n $-dimensional Hardy operator and its dual in mixed radial-angular spaces on Heisenberg group and obtain their sharp bounds by using the rotation method. Furthermore, the sharp bounds of $ n $-dimensional weighted Hardy operator and weighted Cesàro operator are also obtained.
[1] | P. Chen, X. T. Duong, J. Li, Q. Wu, Compactness of Riesz trans form commutator on stratified Lie groups, J. Funct. Anal., 277 (2019), 1639–1676. https://doi.org/10.1016/j.jfa.2019.05.008 doi: 10.1016/j.jfa.2019.05.008 |
[2] | M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, P. Am. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6 doi: 10.1090/S0002-9939-1995-1239796-6 |
[3] | J. Chu, Z. Fu, Q. Wu, $L^p$ and BMO bounds for weighted Hardy operators on the Heisenberg group, J. Inequal. Appl., 2016 (2016), 282. https://doi.org/10.1186/s13660-016-1222-x doi: 10.1186/s13660-016-1222-x |
[4] | T. Coulhon, D. Muller, J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann., 305 (1996), 369–379. https://doi.org/10.1007/BF01444227 doi: 10.1007/BF01444227 |
[5] | J. Duoandikoetxea, O. Oruetxebarria, Weighted mixed-norm inequalities through extrapolation, Math. Nachr., 292 (2019), 1482–1489. https://doi.org/10.1002/mana.201800311 doi: 10.1002/mana.201800311 |
[6] | W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. https://doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5 |
[7] | G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, 1982. |
[8] | Z. Fu, X. Hou, M. Lee, J. Li, A study of one-sided singular integral and function space via reproducing formula, J. Geom. Anal., 2023, In press. |
[9] | Z. Fu, S. Gong, S. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2852. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064 |
[10] | M. González, F. León-Saavedra, Cyclic behavior of the Ces$\grave{a}$ro operator on $L^2(0, \infty)$, P. Am. Math. Soc., 137 (2009), 2049–2055. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064 |
[11] | J. Guo, L. Sun, F. Zhao, Hausdorff operators on the Heisenberg group. Acta Math. Sin., 31 (2015), 1703–1714. https://doi.org/10.1007/s10114-015-5109-4 |
[12] | A. Koräanyi, H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math., 80 (1985), 309–338. https://doi.org/10.1007/BF01388609 doi: 10.1007/BF01388609 |
[13] | F. León-Saavedra, A. Piqueras-Lerena, J. B. Seoane-Sepúlveda, Orbits of Ces$\grave{a}$ro type operators, Math. Nachr., 282 (2009), 764–773. https://doi.org/10.1002/mana.200610769 doi: 10.1002/mana.200610769 |
[14] | A. R. Mirotin, Boundedness of Hausdorff operators on real Hardy spaces $H^1$ over locally compact groups, J. Math. Anal. Appl., 473 (2019), 519–533. https://doi.org/10.1016/j.jmaa.2018.12.065 doi: 10.1016/j.jmaa.2018.12.065 |
[15] | S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 307 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239 |
[16] | S. Thangavelu, Harmonic analysis on the Heisenberg group, Progress in Mathematics, Boston, MA: Birkhauser Boston, 159 (1998). |
[17] | M. Wei, D. Yan, Sharp bounds for Hardy-type operators on mixed radial-angular spaces, arXiv: 2207.14570, 2022. |
[18] | Q. Wu, Z. Fu, Sharp estimates for Hardy operators on Heisenberg group, Front. Math. China, 11 (2016), 155–172. https://doi.org/10.1007/s11464-015-0508-5 doi: 10.1007/s11464-015-0508-5 |
[19] | F. Zhao, Z. Fu, S. Lu, Endpoint estimates for $n$-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0 |