In this paper, we established some sufficient conditions for the boundedness of the Hardy–Littlewood maximal operators and the Hausdorff operators on $ p $-adic Herz spaces and $ p $-adic local block spaces with variable exponents. In particular, the boundedness of the $ p $-adic maximal commutator operators, the $ p $-adic Hardy–Littlewood average operators, and the $ p $-adic Hardy-Hilbert operators on such spaces was also discussed.
Citation: Pham Thi Kim Thuy, Kieu Huu Dung. Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents[J]. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121
In this paper, we established some sufficient conditions for the boundedness of the Hardy–Littlewood maximal operators and the Hausdorff operators on $ p $-adic Herz spaces and $ p $-adic local block spaces with variable exponents. In particular, the boundedness of the $ p $-adic maximal commutator operators, the $ p $-adic Hardy–Littlewood average operators, and the $ p $-adic Hardy-Hilbert operators on such spaces was also discussed.
[1] | A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 781–795. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043 |
[2] | S. Albeverio, A. Y. Khrennikov, V. M. Shelkovich, Harmonic analysis in the $p$-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-adic wavelets, Tauberian theorems, J. Fourier Anal. Appl., 12 (2006), 393–425. https://doi.org/10.1007/s00041-006-6014-0 doi: 10.1007/s00041-006-6014-0 |
[3] | M. Z. Baber, N. Ahmed, C. J. Xu, M. S. Iqbal, T. A. Sulaiman, A computational scheme and its comparison with optical soliton solutions for the stochastic Chen-Lee-Liu equation with sensitivity analysis, Mod. Phys. Lett. B, 2024 (2024), 2450376. https://doi.org/10.1142/S0217984924503767 doi: 10.1142/S0217984924503767 |
[4] | C. Capone, D. Cruz-Uribe, A. Fiorenza, The fractional maximal operator and fractional integrals on variable $L_p$ spaces, Rev. Mat. Iberoamericana, 23 (2007), 743–770. https://doi.org/10.4171/RMI/511 doi: 10.4171/RMI/511 |
[5] | D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, Basel: Springer, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[6] | L. F. Chacón-Cortés, H. Rafeiro, Variable exponent Lebesgue spaces and Hardy–Littlewood maximal function on $p$-adic numbers, P-Adic Num. Ultrametr. Anal. Appl., 12 (2020), 90–111. https://doi.org/10.1134/S2070046620020028 doi: 10.1134/S2070046620020028 |
[7] | N. M. Chuong, H. D. Hung, Maximal functions and weighted norm inequalities on local fields, Appl. Comput. Harmon. A., 29 (2010), 272–286. https://doi.org/10.1016/j.acha.2009.11.002 doi: 10.1016/j.acha.2009.11.002 |
[8] | R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Stud. Math., 51 (1974), 241–250. |
[9] | B. Dragovich, A. Y. Khrennikov, S. V. Kozyrev, I. V. Volovich, On $p$-adic mathematical physics, P-Adic Num. Ultrametr. Anal. Appl., 1 (2009), 1–17. https://doi.org/10.1134/S2070046609010014 doi: 10.1134/S2070046609010014 |
[10] | K. H. Dung, D. V. Duong, The $p$-adic Hausdorff operator and some applications to Hardy–Hilbert type inequalities, Russ. J. Math. Phys., 28 (2021), 303–316. https://doi.org/10.1134/S1061920821030043 doi: 10.1134/S1061920821030043 |
[11] | K. H. Dung, D. V. Duong, Two-weight estimates for Hardy–Littlewood maximal functions and Hausdorff operators on $p$-adic Herz spaces, Izv. Math., 87 (2023), 920–940. https://doi.org/10.4213/im9404e doi: 10.4213/im9404e |
[12] | K. H. Dung, D. L. C. Minh, T. T. Nang, Boundedness of Hardy–Cesàro operators on variable exponent Morrey–Herz spaces, Filomat, 37 (2023), 1001–1016. https://doi.org/10.2298/FIL2304001D doi: 10.2298/FIL2304001D |
[13] | K. H. Dung, P. T. K. Thuy, Commutators of Hardy–Littlewood operators on $p$-adic function spaces with variable exponents, Open Math., 21 (2023), 20220579. https://doi.org/10.1515/math-2022-0579 doi: 10.1515/math-2022-0579 |
[14] | L. Diening, M. Ružička, Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(x)}$ and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197–220. https://doi.org/10.1515/crll.2003.081 doi: 10.1515/crll.2003.081 |
[15] | C. Fefferman, E. M. Stein, Some maximal inequalities, Am. J. Math., 93 (1971), 107–115. https://doi.org/10.2307/2373450 doi: 10.2307/2373450 |
[16] | J. Garcìa-Cuerva, E. Harboure, C. Segovia, J. L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals, Indiana U. Math. J., 40 (1991), 1397–1420. |
[17] | L. Grafakos, Modern Fourier analysis, New York: Springer, 2008. https://doi.org/10.1007/978-1-4939-1230-8 |
[18] | Q. J. He, X. Li, Necessary and sufficient conditions for boundedness of commutators of maximal function on the $p$-adic vector spaces, AIMS Mathematics, 8 (2023), 14064–14085. https://doi.org/10.3934/math.2023719 doi: 10.3934/math.2023719 |
[19] | M. Izuki, Fractional integrals on Herz–Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849 |
[20] | M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4 |
[21] | A. Khrennikov, $p$-Adic valued distributions in mathematical physics, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-015-8356-5 |
[22] | A. N. Kochubei, Radial solutions of non-Archimedean pseudodifferential equations, Pacific Jounal of Mathematics, 269 (2014), 355–369. https://doi.org/10.2140/pjm.2014.269.355 doi: 10.2140/pjm.2014.269.355 |
[23] | S. V. Kozyrev, Methods and applications of ultrametric and $p$-adic analysis: From wavelet theory to biophysics, Proc. Steklov Inst. Math., 274 (2011), 1–84. https://doi.org/10.1134/S0081543811070017 doi: 10.1134/S0081543811070017 |
[24] | Y. C. Kim, $L^q$-Estimates of maximal operators on $p$-adic vector space, Commun. Korean Math. S., 24 (2009), 367–379. https://doi.org/10.4134/CKMS.2009.24.3.367 doi: 10.4134/CKMS.2009.24.3.367 |
[25] | D. F. Li, G. E. Hu, X. L. Shi, Weighted norm inequalities for the maximal commutators of singular integral operators, J. Math. Anal. Appl., 319 (2006), 509–521. https://doi.org/10.1016/j.jmaa.2005.06.054 doi: 10.1016/j.jmaa.2005.06.054 |
[26] | P. L. Li, R. Gao, C. J. Xu, J. W. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635. https://doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0 |
[27] | S. Z. Lu, D. C. Yang, The decomposition of weighted Herz space on $\mathbb{R}^n$ and its applications, Sci. China. Ser. A, 38 (1995), 147–158. |
[28] | S. Z. Lu, D. C. Yang, The decomposition of Herz spaces on local fields and its applications, J. Math. Anal. Appl., 196 (1995), 296–313. https://doi.org/10.1006/jmaa.1995.1411 doi: 10.1006/jmaa.1995.1411 |
[29] | Y. Mizuta, T. Ohno, T. Shimomura, Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent, Hokkaido Math. J., 44 (2015), 185–201. https://doi.org/10.14492/hokmj/1470053290 doi: 10.14492/hokmj/1470053290 |
[30] | K. S. Rim, J. Lee, Estimates of weighted Hardy–Littlewood averages on the $p$-adic vector space, J. Math. Anal. Appl., 324 (2006), 1470–1477. https://doi.org/10.1016/j.jmaa.2006.01.038 doi: 10.1016/j.jmaa.2006.01.038 |
[31] | C. Segovia, J. L. Torrea, Higher order commutators for vector-valued Calderón–Zygmund operators, T. Am. Math. Soc., 336 (1993), 537–556. https://doi.org/10.2307/2154362 doi: 10.2307/2154362 |
[32] | E. M. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton: Princeton University Press, 1993. |
[33] | M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Mathematics, 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653 doi: 10.3934/math.2023653 |
[34] | J. Tan, Boundedness of multilinear fractional type operators on Hardy spaces with variable exponents, Anal. Math. Phys., 10 (2020), 70. https://doi.org/10.1007/s13324-020-00415-x doi: 10.1007/s13324-020-00415-x |
[35] | V. S. Vladimirov, I. V. Volovich, $p$-Adic quantum mechanics, Commun. Math. Phys., 123 (1989), 659–676. https://doi.org/10.1007/BF01218590 doi: 10.1007/BF01218590 |
[36] | V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic analysis and mathematical physis, Singapore: World Scientific, 1994. https://doi.org/10.1142/1581 |
[37] | S. S. Volosivets, Multidimensional Hausdorff operator on $p$-adic field, P-Adic Num. Ultrametr. Anal. Appl., 2 (2010), 252–259. https://doi.org/10.1134/S2070046610030076 doi: 10.1134/S2070046610030076 |
[38] | S. S. Volosivets, Maximal function and Riesz potential on $p$-adic linear spaces, P-Adic Num. Ultrametr. Anal. Appl., 5 (2013), 226–234. https://doi.org/10.1134/S2070046613030059 doi: 10.1134/S2070046613030059 |
[39] | H. Wang, The decomposition for the Herz spaces, Pacific Jounal of Mathematics, 25 (2015), 15–28. |
[40] | C. J. Xu, W. Ou, Q. Y. Cui, Y. C. Pang, M. X. Liao, J. W. Shen, et al., Theoretical exploration and controller design of bifurcation in a plankton population dynamical system accompanying delay, Discrete Cont. Dyn.-S, 2024 (2024), 36. https://doi.org/10.3934/dcdss.2024036 doi: 10.3934/dcdss.2024036 |
[41] | C. J. Xu, Y. Y. Zhao, J. T. Lin, Y. C. Pang, Z. X. Liu, J. W. Shen, et al., Bifurcation investigation and control scheme of fractional neural networks owning multiple delays, Comp. Appl. Math., 43 (2024), 186. https://doi.org/10.1007/s40314-024-02718-2 doi: 10.1007/s40314-024-02718-2 |
[42] | C. J. Xu, J. T. Lin, Y. Y. Zhao, Q. Y. Cui, W. Ou, Y. C. Pang, et al., New results on bifurcation for fractional-order octonion-valued neural networks involving delays, Network-Comp. Neural, 2024 (2024), 1–53. https://doi.org/10.1080/0954898X.2024.2332662 doi: 10.1080/0954898X.2024.2332662 |
[43] | T. L. Yee, K. L. Cheung, K. P. Ho, C. K. Suen, Local sharp maximal functions, geometrical maximal functions and rough maximal functions on local Morrey spaces with variable exponents, Math. Inequal. Appl., 23 (2020), 1509–1528. https://doi.org/10.7153/mia-2020-23-108 doi: 10.7153/mia-2020-23-108 |