Research article

Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents

  • Received: 22 May 2024 Revised: 09 July 2024 Accepted: 12 July 2024 Published: 29 July 2024
  • MSC : 26D15, 42B25, 42B99

  • In this paper, we established some sufficient conditions for the boundedness of the Hardy–Littlewood maximal operators and the Hausdorff operators on $ p $-adic Herz spaces and $ p $-adic local block spaces with variable exponents. In particular, the boundedness of the $ p $-adic maximal commutator operators, the $ p $-adic Hardy–Littlewood average operators, and the $ p $-adic Hardy-Hilbert operators on such spaces was also discussed.

    Citation: Pham Thi Kim Thuy, Kieu Huu Dung. Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents[J]. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121

    Related Papers:

  • In this paper, we established some sufficient conditions for the boundedness of the Hardy–Littlewood maximal operators and the Hausdorff operators on $ p $-adic Herz spaces and $ p $-adic local block spaces with variable exponents. In particular, the boundedness of the $ p $-adic maximal commutator operators, the $ p $-adic Hardy–Littlewood average operators, and the $ p $-adic Hardy-Hilbert operators on such spaces was also discussed.



    加载中


    [1] A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 781–795. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
    [2] S. Albeverio, A. Y. Khrennikov, V. M. Shelkovich, Harmonic analysis in the $p$-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-adic wavelets, Tauberian theorems, J. Fourier Anal. Appl., 12 (2006), 393–425. https://doi.org/10.1007/s00041-006-6014-0 doi: 10.1007/s00041-006-6014-0
    [3] M. Z. Baber, N. Ahmed, C. J. Xu, M. S. Iqbal, T. A. Sulaiman, A computational scheme and its comparison with optical soliton solutions for the stochastic Chen-Lee-Liu equation with sensitivity analysis, Mod. Phys. Lett. B, 2024 (2024), 2450376. https://doi.org/10.1142/S0217984924503767 doi: 10.1142/S0217984924503767
    [4] C. Capone, D. Cruz-Uribe, A. Fiorenza, The fractional maximal operator and fractional integrals on variable $L_p$ spaces, Rev. Mat. Iberoamericana, 23 (2007), 743–770. https://doi.org/10.4171/RMI/511 doi: 10.4171/RMI/511
    [5] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, Basel: Springer, 2013. https://doi.org/10.1007/978-3-0348-0548-3
    [6] L. F. Chacón-Cortés, H. Rafeiro, Variable exponent Lebesgue spaces and Hardy–Littlewood maximal function on $p$-adic numbers, P-Adic Num. Ultrametr. Anal. Appl., 12 (2020), 90–111. https://doi.org/10.1134/S2070046620020028 doi: 10.1134/S2070046620020028
    [7] N. M. Chuong, H. D. Hung, Maximal functions and weighted norm inequalities on local fields, Appl. Comput. Harmon. A., 29 (2010), 272–286. https://doi.org/10.1016/j.acha.2009.11.002 doi: 10.1016/j.acha.2009.11.002
    [8] R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Stud. Math., 51 (1974), 241–250.
    [9] B. Dragovich, A. Y. Khrennikov, S. V. Kozyrev, I. V. Volovich, On $p$-adic mathematical physics, P-Adic Num. Ultrametr. Anal. Appl., 1 (2009), 1–17. https://doi.org/10.1134/S2070046609010014 doi: 10.1134/S2070046609010014
    [10] K. H. Dung, D. V. Duong, The $p$-adic Hausdorff operator and some applications to Hardy–Hilbert type inequalities, Russ. J. Math. Phys., 28 (2021), 303–316. https://doi.org/10.1134/S1061920821030043 doi: 10.1134/S1061920821030043
    [11] K. H. Dung, D. V. Duong, Two-weight estimates for Hardy–Littlewood maximal functions and Hausdorff operators on $p$-adic Herz spaces, Izv. Math., 87 (2023), 920–940. https://doi.org/10.4213/im9404e doi: 10.4213/im9404e
    [12] K. H. Dung, D. L. C. Minh, T. T. Nang, Boundedness of Hardy–Cesàro operators on variable exponent Morrey–Herz spaces, Filomat, 37 (2023), 1001–1016. https://doi.org/10.2298/FIL2304001D doi: 10.2298/FIL2304001D
    [13] K. H. Dung, P. T. K. Thuy, Commutators of Hardy–Littlewood operators on $p$-adic function spaces with variable exponents, Open Math., 21 (2023), 20220579. https://doi.org/10.1515/math-2022-0579 doi: 10.1515/math-2022-0579
    [14] L. Diening, M. Ružička, Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(x)}$ and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197–220. https://doi.org/10.1515/crll.2003.081 doi: 10.1515/crll.2003.081
    [15] C. Fefferman, E. M. Stein, Some maximal inequalities, Am. J. Math., 93 (1971), 107–115. https://doi.org/10.2307/2373450 doi: 10.2307/2373450
    [16] J. Garcìa-Cuerva, E. Harboure, C. Segovia, J. L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals, Indiana U. Math. J., 40 (1991), 1397–1420.
    [17] L. Grafakos, Modern Fourier analysis, New York: Springer, 2008. https://doi.org/10.1007/978-1-4939-1230-8
    [18] Q. J. He, X. Li, Necessary and sufficient conditions for boundedness of commutators of maximal function on the $p$-adic vector spaces, AIMS Mathematics, 8 (2023), 14064–14085. https://doi.org/10.3934/math.2023719 doi: 10.3934/math.2023719
    [19] M. Izuki, Fractional integrals on Herz–Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
    [20] M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
    [21] A. Khrennikov, $p$-Adic valued distributions in mathematical physics, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-015-8356-5
    [22] A. N. Kochubei, Radial solutions of non-Archimedean pseudodifferential equations, Pacific Jounal of Mathematics, 269 (2014), 355–369. https://doi.org/10.2140/pjm.2014.269.355 doi: 10.2140/pjm.2014.269.355
    [23] S. V. Kozyrev, Methods and applications of ultrametric and $p$-adic analysis: From wavelet theory to biophysics, Proc. Steklov Inst. Math., 274 (2011), 1–84. https://doi.org/10.1134/S0081543811070017 doi: 10.1134/S0081543811070017
    [24] Y. C. Kim, $L^q$-Estimates of maximal operators on $p$-adic vector space, Commun. Korean Math. S., 24 (2009), 367–379. https://doi.org/10.4134/CKMS.2009.24.3.367 doi: 10.4134/CKMS.2009.24.3.367
    [25] D. F. Li, G. E. Hu, X. L. Shi, Weighted norm inequalities for the maximal commutators of singular integral operators, J. Math. Anal. Appl., 319 (2006), 509–521. https://doi.org/10.1016/j.jmaa.2005.06.054 doi: 10.1016/j.jmaa.2005.06.054
    [26] P. L. Li, R. Gao, C. J. Xu, J. W. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635. https://doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0
    [27] S. Z. Lu, D. C. Yang, The decomposition of weighted Herz space on $\mathbb{R}^n$ and its applications, Sci. China. Ser. A, 38 (1995), 147–158.
    [28] S. Z. Lu, D. C. Yang, The decomposition of Herz spaces on local fields and its applications, J. Math. Anal. Appl., 196 (1995), 296–313. https://doi.org/10.1006/jmaa.1995.1411 doi: 10.1006/jmaa.1995.1411
    [29] Y. Mizuta, T. Ohno, T. Shimomura, Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent, Hokkaido Math. J., 44 (2015), 185–201. https://doi.org/10.14492/hokmj/1470053290 doi: 10.14492/hokmj/1470053290
    [30] K. S. Rim, J. Lee, Estimates of weighted Hardy–Littlewood averages on the $p$-adic vector space, J. Math. Anal. Appl., 324 (2006), 1470–1477. https://doi.org/10.1016/j.jmaa.2006.01.038 doi: 10.1016/j.jmaa.2006.01.038
    [31] C. Segovia, J. L. Torrea, Higher order commutators for vector-valued Calderón–Zygmund operators, T. Am. Math. Soc., 336 (1993), 537–556. https://doi.org/10.2307/2154362 doi: 10.2307/2154362
    [32] E. M. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton: Princeton University Press, 1993.
    [33] M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Mathematics, 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653 doi: 10.3934/math.2023653
    [34] J. Tan, Boundedness of multilinear fractional type operators on Hardy spaces with variable exponents, Anal. Math. Phys., 10 (2020), 70. https://doi.org/10.1007/s13324-020-00415-x doi: 10.1007/s13324-020-00415-x
    [35] V. S. Vladimirov, I. V. Volovich, $p$-Adic quantum mechanics, Commun. Math. Phys., 123 (1989), 659–676. https://doi.org/10.1007/BF01218590 doi: 10.1007/BF01218590
    [36] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic analysis and mathematical physis, Singapore: World Scientific, 1994. https://doi.org/10.1142/1581
    [37] S. S. Volosivets, Multidimensional Hausdorff operator on $p$-adic field, P-Adic Num. Ultrametr. Anal. Appl., 2 (2010), 252–259. https://doi.org/10.1134/S2070046610030076 doi: 10.1134/S2070046610030076
    [38] S. S. Volosivets, Maximal function and Riesz potential on $p$-adic linear spaces, P-Adic Num. Ultrametr. Anal. Appl., 5 (2013), 226–234. https://doi.org/10.1134/S2070046613030059 doi: 10.1134/S2070046613030059
    [39] H. Wang, The decomposition for the Herz spaces, Pacific Jounal of Mathematics, 25 (2015), 15–28.
    [40] C. J. Xu, W. Ou, Q. Y. Cui, Y. C. Pang, M. X. Liao, J. W. Shen, et al., Theoretical exploration and controller design of bifurcation in a plankton population dynamical system accompanying delay, Discrete Cont. Dyn.-S, 2024 (2024), 36. https://doi.org/10.3934/dcdss.2024036 doi: 10.3934/dcdss.2024036
    [41] C. J. Xu, Y. Y. Zhao, J. T. Lin, Y. C. Pang, Z. X. Liu, J. W. Shen, et al., Bifurcation investigation and control scheme of fractional neural networks owning multiple delays, Comp. Appl. Math., 43 (2024), 186. https://doi.org/10.1007/s40314-024-02718-2 doi: 10.1007/s40314-024-02718-2
    [42] C. J. Xu, J. T. Lin, Y. Y. Zhao, Q. Y. Cui, W. Ou, Y. C. Pang, et al., New results on bifurcation for fractional-order octonion-valued neural networks involving delays, Network-Comp. Neural, 2024 (2024), 1–53. https://doi.org/10.1080/0954898X.2024.2332662 doi: 10.1080/0954898X.2024.2332662
    [43] T. L. Yee, K. L. Cheung, K. P. Ho, C. K. Suen, Local sharp maximal functions, geometrical maximal functions and rough maximal functions on local Morrey spaces with variable exponents, Math. Inequal. Appl., 23 (2020), 1509–1528. https://doi.org/10.7153/mia-2020-23-108 doi: 10.7153/mia-2020-23-108
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(534) PDF downloads(40) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog