Research article

Solvability of the Sylvester equation AXXB=C under left semi-tensor product

  • Received: 31 March 2022 Revised: 08 April 2022 Accepted: 20 April 2022 Published: 27 June 2022
  • This paper investigates the solvability of the Sylvester matrix equation AXXB=C with respect to left semi-tensor product. Firstly, we discuss the matrix-vector equation AXXB=C under semi-tensor product. A necessary and sufficient condition for the solvability of the matrix-vector equation and specific solving methods are studied and given. Based on this, the solvability of the matrix equation AXXB=C under left semi-tensor product is discussed. Finally, several examples are presented to illustrate the efficiency of the results.

    Citation: Naiwen Wang. Solvability of the Sylvester equation AXXB=C under left semi-tensor product[J]. Mathematical Modelling and Control, 2022, 2(2): 81-89. doi: 10.3934/mmc.2022010

    Related Papers:

    [1] Syafrizal Sy, Rinovia Simanjuntak, Tamaro Nadeak, Kiki Ariyanti Sugeng, Tulus Tulus . Distance antimagic labeling of circulant graphs. AIMS Mathematics, 2024, 9(8): 21177-21188. doi: 10.3934/math.20241028
    [2] Bilal A. Rather, M. Aijaz, Fawad Ali, Nabil Mlaiki, Asad Ullah . On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings. AIMS Mathematics, 2022, 7(7): 12635-12649. doi: 10.3934/math.2022699
    [3] Robert Reynolds, Allan Stauffer . Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function. AIMS Mathematics, 2021, 6(2): 1324-1331. doi: 10.3934/math.2021082
    [4] Kotte Amaranadha Reddy, S Sharief Basha . New classes of reverse super edge magic graphs. AIMS Mathematics, 2022, 7(3): 3590-3602. doi: 10.3934/math.2022198
    [5] Naila Mehreen, Rashid Farooq, Shehnaz Akhter . On partition dimension of fullerene graphs. AIMS Mathematics, 2018, 3(3): 343-352. doi: 10.3934/Math.2018.3.343
    [6] Mohamed R. Zeen El Deen, Ghada Elmahdy . New classes of graphs with edge δ graceful labeling. AIMS Mathematics, 2022, 7(3): 3554-3589. doi: 10.3934/math.2022197
    [7] Yingying Xiao, Chuanxi Zhu, Li Xie . Existence of ground state solutions for the modified Chern-Simons-Schrödinger equations with general Choquard type nonlinearity. AIMS Mathematics, 2022, 7(4): 7166-7176. doi: 10.3934/math.2022399
    [8] Yunfeng Wei, Hongwei Yang, Hongwang Yu . On stable solutions of the weighted Lane-Emden equation involving Grushin operator. AIMS Mathematics, 2021, 6(3): 2623-2635. doi: 10.3934/math.2021159
    [9] Baskar Mari, Ravi Sankar Jeyaraj . Radio number of 2 super subdivision for path related graphs. AIMS Mathematics, 2024, 9(4): 8214-8229. doi: 10.3934/math.2024399
    [10] Wafaa Fakieh, Zakeiah Alkhamisi, Hanaa Alashwali . On the Aα-spectra of graphs and the relation between Aα- and Aα-spectra. AIMS Mathematics, 2024, 9(2): 4587-4603. doi: 10.3934/math.2024221
  • This paper investigates the solvability of the Sylvester matrix equation AXXB=C with respect to left semi-tensor product. Firstly, we discuss the matrix-vector equation AXXB=C under semi-tensor product. A necessary and sufficient condition for the solvability of the matrix-vector equation and specific solving methods are studied and given. Based on this, the solvability of the matrix equation AXXB=C under left semi-tensor product is discussed. Finally, several examples are presented to illustrate the efficiency of the results.



    Let G be a finite, simple and connected graph. A family of subetaaphs H1,H2,,Ht is called an edge-covering if every edge from E(G) belongs to at least one of the subetaaphs Hi, i=1,2,,t. When Hi,i=1,2,,t is isomorphic to a given graph H, then graph G admits an H-covering. G is called an (α,d)-H-antimagic if there exists a total labeling ϕ:V(G)E(G){1,2,,v+e} with the H-weights,

    wtϕ(H)=vV(H)ϕ(v)+eE(H)ϕ(e),

    forming an arithmetic progression α,α+d,α+2d,,α+(t1)d, where α>0 and d0 are two integers and t is the number of all subetaaphs of G isomorphic to H. Moreover, G is said to be super (α,d)-H-antimagic if ϕ(V(G))={1,2,3,,|V(G)|}.

    The H-supermagic graph was first introduced by Gutiérrez and Lladó in [3]. Some other results can be seen from [4,7,8,9,10,11]. An (a,d)-H-antimagic labeling was introduced by Inayah et al. [5]. The further results on antimagic labeling are discussed in [2,6,16]. In [12], authors discussed the supermagic and super (α,1)-C4-antimagic labeling of book graph and its disjoint union. The super (a,d)-C3-antimagicness of a corona graph for differences d{0,1,,5} is discussed in [1]. M. A. Umar [14] study the existence of the super cycle-antimagic labeling of ladder graphs for differences d{0,1,,15}. M.A.Umar et al. [13] gives the super (α,d)-C4-antimagic labeling of book graphs for differences d=1,2,,13.

    In this research manuscript, we investigated the existence of super (α,1)-C4-antimagic labeling of stacked book graphs SB(p,q) that can be thought of as generalization of a book graph and super (α,1)-C4(r+1)-antimagic labeling of its r subdivided graph SB(p,q)(r).

    A Cartesian product of two graphs G1 and G2, denoted by G1G2, is the graph with vertex set V(G1)V(G2), where two vertices (u,u) and (v,v) are adjacent if and only if u=v and uvE(G2) or u=v and uvE(G1).

    A stacked book graph denoted by SB(p,q) is defined as the cartesian product of a star graph Sp on p+1 vertices with a path Pq on q vertices. i.e., SB(p,q)Sp+1Pq, where the symbol used to denote the cartesian product of two graphs. The stacked book graph SB(p,q) contains q(p+1) vertices and q(2p+1)(p+1) edges.

    The vertex set V(SB(p,q)) have the elements {c(j),x(j)i:1ip,1jq} and the edge set E(SB(p,q)) have the elements

    qj=1(pi=1{c(j)x(j)i})(pi=1(q1j=1{c(j)c(j+1),x(j)ix(j+1)i}))

    A typical picture of stacked book graph SB(p,q) is given in Figure 1:

    Figure 1.  Stacked book graph SB(4,5).

    Clearly stacked book graph SB(p,q) admits C4-covering. It will be worth noting for p=1, the stacked book graph SB(1,q) is a ladder graph P2Pq, for p=2, the stacked book graph SB(2,q) is a grid graph P2Pq and for q=2, the stacked book graph SB(p,2) is a book graph PpP2. Ming-Ju Lee et al. describe the super (α,1)-cycle-antimagic labeling of grid graph PpPq in [15]. M. A. Umar et al. [12] give the supermagic and super (α,1)-C4-antimagic labeling of book graph and its disjoint union while [13] describes the super (α,d)-C4-antimagic labeling of book graphs for differences d=1,2,,13. Therefore we consider p,q3 in this paper.

    Let Ci,j4 be the (i,j)th cycle for 1ip,1jq1 in SB(p,q). Each (i,j)th-cycle Ci,j4 in SB(p,q) has the vertex set {c(j),c(j+1),x(j)i,x(j+1)i} and the edge set {c(j)c(j+1),x(j)ix(j+1)i,c(j)x(j)i,c(j+1)x(j+1)i}.

    The corresponding Ci,j4-weight under a total labeling ϕ would be:

    wtϕ(Ci,j4)=vV(Ci,j4)ϕ(v)+eE(Ci,j4)ϕ(e).=j+1k=j(ϕ(x(k)i)+ϕ(c(k))+ϕ(c(k)x(k)i))+(ϕ(x(j)ix(j+1)i)+ϕ(c(j)c(j+1)))

    For our convenience, throughout this paper by i=¯1,p, we mean i=1,2,,p and vice versa.

    Theorem 1. Let p,q3 be positive integers and Sp be a star on p+1 vertices. Then stacked book graph SB(p,q) admits a super (α,1)-C4-antimagic labeling.

    Proof. The total labeling ϕ0 have the form:

    ϕ0(c(j))={q2+j2       j0   (mod2)j+12       j1   (mod2)
    ϕ0(x(j)i)=q+i+(j1)pif  i=¯1,p,j=¯1,qϕ0(c(j)x(j)i)=p(2q+1j)+q+1iif  i=¯1,p,j=¯1,qϕ0(c(j)c(j+1))=2q(p+1)jif  i=¯1,p,j=¯1,q1ϕ0(x(j)ix(j+1)i)=q(2p+1)+i(q1)+jif  i=¯1,p,j=¯1,q1

    Evidently,

    ϕ0(x(j)i)+ϕ(c(j)x(j)i)=2q(p+1)+1ϕ0(c(j))+ϕ(c(j+1))+ϕ(c(j)c(j+1))=q2+2q(p+1)+1 (2.1)

    and therefore,

    wtϕ0(Ci,j4) ϕ(x(j)ix(j+1)i)=6q(p+1)+3+q2 (2.2)

    Equations (2.1) and (2.2) gives:

    wtϕ0(Ci,j4)=8q(p+1)+2+q2+j+(i1)(q1) (2.3)

    For convenience, define wtϕ0(partial)=8q(p+1)+2+q2.

    Therefore the Ci,j4-weights are:

    wtϕ0(C1,14)={wtϕ0(partial)}+1wtϕ0(C1,24)={wtϕ0(partial)}+2.    .    .    wtϕ0(C1,q14)={wtϕ0(partial)}+q1wtϕ0(C2,14)={wtϕ0(partial)}+1+(q1)wtϕ0(C2,24)={wtϕ0(partial)}+2+(q1).    .    .    wtϕ0(C2,q14)={wtϕ0(partial)}+2(q1)wtϕ0(C2,q14)={wtϕ0(partial)}+2(q1)
    .    .    .    wtϕ0(Cp,14)={wtϕ0(partial)}+1+(P1)(q1)wtϕ0(Cp,24)={wtϕ0(partial)}+2+(P1)(q1).    .    .    wtϕ0(Cp,q14)={wtϕ0(partial)}+p(q1) (2.4)

    which makes the total labeling ϕ0 a super (α,1)-C4-antimagic labeling and the proof is complete.

    Let G be a graph and r1 be a positive integer. By G(r), we define r-subdivided graph of G constructed by inserting r new vertices into every edge of G.

    In this way, SB(p,q)(r) is the r-subdivided graph of stacked book graph with the vertex set {c(j),x(j)i,u(i,j)r:1ip,1jq}{ϵ(j)r,δ(i,j)r:1ip,1jq1} and the edge set

    {c(j)u(i,j)1,x(j)iu(i,j)r,u(i,j)ku(i,j)k+1:1ip,1jq,1kr1}
    {c(j)ϵ(j)1,c(j+1)ϵ(j)r,x(j)iδ(i,j)1,x(j+1)iδ(i,j)r,ϵ(j)kϵ(j)k+1,δ(i,j)kδ(i,j)k+1:1ip,1jq1,1kr1}

    where u(i,j)r, ϵ(j)r, δ(i,j)r are r new vertices inserted into the edges c(j)x(j)i, c(j)c(j+1) and x(j)ix(j+1)i respectively. Clearly r-subdivided stacked book graph SB(p,q)(r) admits C4(r+1)-covering.

    Let Ci,j4(r+1) be the (i,j)th-cycle for 1ip,1jq1 in SB(p,q)(r). Each (i,j)th-cycle Ci,j4(r+1) in SB(p,q)(r) has the vertex set

    {c(j),c(j+1),x(j)i,x(j+1)i},rk=1{u(i,j)k,u(i,j+1)k,ϵ(j)k,δ(i,j)k}

    and the edge set {u(i,j)ku(i,j)k+1,u(i,j+1)ku(i,j+1)k+1,ϵ(j)kϵ(j)k+1,δ(i,j)kδ(i,j)k+1:1kr1}

    {c(j)u(i,j)1,c(j+1)u(i,j+1)1,x(j)iu(i,j)r,x(j+1)iu(i,j+1)r,c(j)ϵ(j)1,c(j+1)ϵ(j)r,x(j)iδ(i,j)1,x(j+1)iδ(i,j)r}

    Ci,j4(r+1)-weight under a total labeling ϕ would be:

    wtϕ(Ci,j4(r+1))=vV(Ci,j4(r+1))ϕ(v)+eE(Ci,j4(r+1))ϕ(e).=j+1s=j(ϕ(c(s))+ϕ(x(s)i))+rs=1(j+1t=j(ϕ(u(i,t)s))+ϕ(ϵ(j)s)+ϕ(δ(i,j)s))++j+1s=j(ϕ(c(s)u(i,s)1)+ϕ(x(s)iu(i,s)r))+ϕ(c(j)ϵ(j)1)+ϕ(c(j+1)ϵ(j)r)+ϕ(x(j)iδ(i,j)1)++ϕ(x(j+1)iδ(i,j)r)+r1k=1(ϕ(ϵ(j)kϵ(j)k+1)+ϕ(δ(i,j)kδ(i,j)k+1))+j+1s=j(r1k=1ϕ(u(i,s)ku(i,s)k+1))=Partial1+2Partial2+Partial3 (3.1)

    where

    Partial1=ϕ(c(j)ϵ(j)1)+ϕ(c(j+1)ϵ(j)r)+j+1s=jϕ(c(s))+rk=1ϕ(ϵ(j)k)+r1k=1ϕ(ϵ(j)kϵ(j)k+1) (3.2)
    Partial2=ϕ(x(j)i)+ϕ(x(j)iu(i,j)r)+ϕ(c(j)u(i,j)1)+rk=1ϕ(u(i,j)k)+r1k=1ϕ(u(i,j)ku(i,j)k+1) (3.3)
    Partial3=ϕ(x(j)iδ(i,j)1)+ϕ(x(j+1)iδ(i,j)r)+rk=1ϕ(δ(i,j)k)+r1k=1ϕ(δ(i,j)kδ(i,j)k+1)+ (3.4)

    Theorem 2. Let p,q3 and r1 be positive integers and SB(p,q)(r) be r-subdivided stacked book graph then SB(p,q)(r) admits a super (β,1)-C4(r+1)-antimagic labeling.

    Proof. The total labeling ϕ have the form:

    ϕ(c(j))={q2+j2       j0   (mod2)j+12       j1   (mod2)
    ϕ(x(j)i)=j+iqif  i=¯1,p, j=¯1,qϕ(ϵ(j)k)=pq+k(q1)+1+jif  j=¯1,q1, k=¯1,rϕ(δ(i,j)k)=p+(q1)(pk+r+i)+1+jif  i=¯1,p, j=¯1,q1, k=¯1,rϕ(u(i,j)k)=r(p+1)(q1)+q(pk+i)+jif  i=¯1,p, j=¯1,q, k=¯1,rϕ(c(j)u(i,j)1)=r(p+1)(q1)+q(p(r+2)+2i)+1jif  i=¯1,p, j=¯1,qϕ(x(j)iu(i,j)r)=r(p+1)(q1)+q(p(r+3)+2i)+1jif  i=¯1,p, j=¯1,qϕ(u(i,j)ku(i,j)k+1)=r(p+1)(q1)+q(p(2r+3k)+2i)+1jif  i=¯1,p, j=¯1,q, k=¯1,r1ϕ(c(j)ϵ(j)1)=r(p+1)(q1)+2q(p(r+1)+1)jif  j=¯1,q1ϕ(c(j+1)ϵ(j)r)=r(p+1)(q1)+q(2p(r+1)+3)(1+j)if  j=¯1,q1ϕ(ϵ(j)kϵ(j)k+1)=p(3qr+2qr)(q1)(k2r)+3q1jif  j=¯1,q1, k=¯1,r1ϕ(x(j)iδ(i,j)1)=(q1)[r(p+2)+i]+2pq(r+1)+q+jif  i=¯1,p, j=¯1,q1ϕ(x(j+1)iδ(i,j)r)=(q1)[r(p+2)+2p+1i]+2pq(r+1)+2qjif  i=¯1,p, j=¯1,q1ϕ(δ(i,j)kδ(i,j)k+1)=(q1)[2(pr+p+r)+1ipk]+2q[pr+p+1]jif  i=¯1,p, j=¯1,q1, k=¯1,r1

    Using expressions (3.2), (3.3) and (3.4), we have:

    Partial1=q2+j+1+r[pq+(r+1)(q1)2+1+j]++2r(p+1)(q1)+4pq(r+1)+5q12j+(r1)[p(3qr+2qr)+2r(q1)+3q1jr(q1)2]=q2+1+pqr(4+3r)+p(1+r)(2qr)+r(2r+1)(q1)+q(3r+2) (3.5)
    Partial2=iq+j+2r(p+1)(q1)+pq(2r+5)+2q(2i)+22j++r[r(p+1)(q1)+qi+j+pq(r+1)2]+(r1)[r(p+1)(q1)+pq(2r+3)+q(2i)+1jpqr2]=r(p+1)(q1)(1+2r)+(1+r)[2pq(1+r)+1+2q]+1 (3.6)
    Partial3=p+(q1)(r+i)+1+j+pr(q1)(r+1)2pr(q1)(r1)2+(q1)[2r(p+2)+2p+1]+4pq(r+1)+3q(r1)j(r1)(q1)[2pr+2p+2r+1i]+2q(r1)[pr+p+1]=r(r+1)(q1)(2p+3)+q(2pr2+5pr+2p+2r+1)+r+i(q1)+j=SPartial3+i(q1)+j (3.7)

    where SPartial3=r(r+1)(q1)(2p+3)+q(2pr2+5pr+2p+2r+1)+r

    wtϕ(Ci,j4(r+1))=Partial1+2Partial2+Partial3=Partial1+2Partial2+SPartial3+i(q1)+j (3.8)

    One can observe here that the Partial1+2Partial2+SPartial3 are independent of i and j. Equation (3.8) clearly shows that wtϕ(Ci,j4(r+1)) only depends on i and j. Equation (3.8) with equation (2.4) proves that SB(p,q)(r) admits a super (β,1)-C4(r+1)-antimagic labeling which completes the proof.

    In this manuscript, we prove results related to super (α,1)-C4-antimagic labeling of stacked book graphs SB(p,q) and super (α,1)-C4(r+1)-antimagic labeling of its r subdivided graph SB(p,q)(r). One can extend these results for other differences d and for disjoint union of stacked book graphs. One can also prove results about applications of graph labeling in data science and communication networks.

    The study was supported by the Key Industrial Technology Development Project of Chongqing Development and Reform Commission, China (Grant No. 2018148208), Key Technological Innovation and Application Development Project of Chongqing, China (Grant No. cstc2019jscx-fxydX0094), Innovation and Entrepreneurship Demonstration Team of Yingcai Program of Chongqing, China (Grant No. CQYC201903167), Science and Technology Innovation Project of Yongchuan District (Ycstc,2020cc0501).

    The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).

    The authors are grateful to the anonymous reviewers of this journal who helped to improve the paper.

    The authors declare that there is no conflict of interests.



    [1] G. W. Stagg, A. H. El-Abiad, Computer Methods in Power System Analysis, New York: McGraw-Hill, 1968.
    [2] D. Z. Cheng, Matrix and Polynomial Approach to Dynamics Control Systems, Beijing: Science Press, 2002.
    [3] S. W. Mei, F. Liu, A. C. Xue, A Tensor Product in Power System Transient Analysis Method, Beijing: Tsinghua University Press, 2010.
    [4] E. B. Castelan, V. Gomes da Silva, On the solution of a Sylvester matrix equation appearing in descriptor systems control theory, Syst. Control Lett., 54 (2005), 109–117. https://doi.org/10.1016/j.sysconle.2004.07.002 doi: 10.1016/j.sysconle.2004.07.002
    [5] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Advances in Design and Control, SIAM, Philadelphia, PA, 2005. https://doi.org/10.1137/1.9780898718713
    [6] R. K. Cavinlii, S. P. Bhattacharyya, Robust and well-conditioned eigenstructure assignment via sylvester's equation, Optim. Contr. Appl. Met., 4 (1983), 205–212. https://doi.org/10.1002/oca.4660040302 doi: 10.1002/oca.4660040302
    [7] C. Chen, D. Schonfeld, Pose estimation from multiple cameras based on Sylvester's equation, Comput. Vis. Image Und., 114 (2010), 652–666. https://doi.org/10.1016/j.cviu.2010.01.002 doi: 10.1016/j.cviu.2010.01.002
    [8] W. E. Roth, The equation AXYB=C and AXXB=C in matrices, Proc. Amer. Math. Soc, 3 (1952), 392–396. https://doi.org/10.1090/S0002-9939-1952-0047598-3 doi: 10.1090/S0002-9939-1952-0047598-3
    [9] G. Golub, S. Nash, C. Van Loan, A Hessenberg-Schur method for the problem AX+XB=C, IEEE T. Autom. Control, 24 (1979), 909–913. https://doi.org/10.1109/TAC.1979.1102170 doi: 10.1109/TAC.1979.1102170
    [10] A. Varga, Robust pole assignment via Sylvester equation based state feedback parametrization, IEEE International Symposium on Computer-Aided Control System Design, 57 (2000), 13–18.
    [11] A. Dmytryshyn, B. Kågström, Coupled Sylvester-type matrix equations and block diagonalization, SIAM J. Matrix Anal. Appl, 36 (2015), 580–593. https://doi.org/10.1137/151005907 doi: 10.1137/151005907
    [12] D. Cheng, H. Qi, Y. Zhao, An Introduction to Semi-tensor Product of Matrices and its Applications, Singapore: World Scientific Publishing Company, 2012.
    [13] M. R. Xu, Y. Z. Zhang, A. R. Wei, Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling, Control theory and technology, 2 (2014), 187–197. https://doi.org/10.1007/s11768-014-0153-7 doi: 10.1007/s11768-014-0153-7
    [14] D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, London: Singapore, 2011.
    [15] J. Yao, J.-E. Feng, M. Meng, On solutions of the matrix equation AX=B with respect to semi-tensor product, J. Franklin Inst., 353 (2016), 1109–1131. https://doi.org/10.1016/j.jfranklin.2015.04.004 doi: 10.1016/j.jfranklin.2015.04.004
    [16] Z. Ji, J. Li, X. Zhou, F. J. Duan, T. Li, On solutions of the matrix equation AXB=C under semi-tensor product, Linear and Multilinear Algebra, 69 (2021), 1935–1963. https://doi.org/10.1080/03081087.2019.1650881 doi: 10.1080/03081087.2019.1650881
    [17] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge: Cambridge University Press, 1991.
    [18] H. Fan, J.-E. Feng, M. Meng, B. Wang, General decomposition of fuzzy relations: Semi-tensor product approach, Fuzzy Sets and Systems, 384 (2020), 75–90. https://doi.org/10.1016/j.fss.2018.12.012 doi: 10.1016/j.fss.2018.12.012
    [19] Y. Yuan, Solving the mixed Sylvester matrix equations by matrix decompositions, C. R. Math. Acad. Sci. Paris, 353 (2015), 1053–1059. https://doi.org/10.1016/j.crma.2015.08.010 doi: 10.1016/j.crma.2015.08.010
    [20] Q. W. Wang, Z. H. He, Solvability conditions and general solution for the mixed Sylvester equations, Automatica, 49 (2013), 2713–2719. https://doi.org/10.1016/j.automatica.2013.06.009 doi: 10.1016/j.automatica.2013.06.009
  • This article has been cited by:

    1. Hafiz Usman Afzal, Ahmed Alamer, Muhammad Javaid, Computing Antimagic Labeling of Lattically Designed Symmetric Networks, 2022, 10, 2169-3536, 32394, 10.1109/ACCESS.2022.3160715
    2. Nur Inayah, Faisal Susanto, Andrea Semaničová-Feňovčíková, On H-antimagic coverings for m-shadow and closed m-shadow of connected graphs, 2021, 7, 24058440, e08203, 10.1016/j.heliyon.2021.e08203
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1578) PDF downloads(91) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog