This paper investigates the solvability of the Sylvester matrix equation $ AX-XB = C $ with respect to left semi-tensor product. Firstly, we discuss the matrix-vector equation $ AX-XB = C $ under semi-tensor product. A necessary and sufficient condition for the solvability of the matrix-vector equation and specific solving methods are studied and given. Based on this, the solvability of the matrix equation $ AX-XB = C $ under left semi-tensor product is discussed. Finally, several examples are presented to illustrate the efficiency of the results.
Citation: Naiwen Wang. Solvability of the Sylvester equation $ AX-XB = C $ under left semi-tensor product[J]. Mathematical Modelling and Control, 2022, 2(2): 81-89. doi: 10.3934/mmc.2022010
This paper investigates the solvability of the Sylvester matrix equation $ AX-XB = C $ with respect to left semi-tensor product. Firstly, we discuss the matrix-vector equation $ AX-XB = C $ under semi-tensor product. A necessary and sufficient condition for the solvability of the matrix-vector equation and specific solving methods are studied and given. Based on this, the solvability of the matrix equation $ AX-XB = C $ under left semi-tensor product is discussed. Finally, several examples are presented to illustrate the efficiency of the results.
[1] | G. W. Stagg, A. H. El-Abiad, Computer Methods in Power System Analysis, New York: McGraw-Hill, 1968. |
[2] | D. Z. Cheng, Matrix and Polynomial Approach to Dynamics Control Systems, Beijing: Science Press, 2002. |
[3] | S. W. Mei, F. Liu, A. C. Xue, A Tensor Product in Power System Transient Analysis Method, Beijing: Tsinghua University Press, 2010. |
[4] | E. B. Castelan, V. Gomes da Silva, On the solution of a Sylvester matrix equation appearing in descriptor systems control theory, Syst. Control Lett., 54 (2005), 109–117. https://doi.org/10.1016/j.sysconle.2004.07.002 doi: 10.1016/j.sysconle.2004.07.002 |
[5] | A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Advances in Design and Control, SIAM, Philadelphia, PA, 2005. https://doi.org/10.1137/1.9780898718713 |
[6] | R. K. Cavinlii, S. P. Bhattacharyya, Robust and well-conditioned eigenstructure assignment via sylvester's equation, Optim. Contr. Appl. Met., 4 (1983), 205–212. https://doi.org/10.1002/oca.4660040302 doi: 10.1002/oca.4660040302 |
[7] | C. Chen, D. Schonfeld, Pose estimation from multiple cameras based on Sylvester's equation, Comput. Vis. Image Und., 114 (2010), 652–666. https://doi.org/10.1016/j.cviu.2010.01.002 doi: 10.1016/j.cviu.2010.01.002 |
[8] | W. E. Roth, The equation $AX-YB = C$ and $AX-XB = C$ in matrices, Proc. Amer. Math. Soc, 3 (1952), 392–396. https://doi.org/10.1090/S0002-9939-1952-0047598-3 doi: 10.1090/S0002-9939-1952-0047598-3 |
[9] | G. Golub, S. Nash, C. Van Loan, A Hessenberg-Schur method for the problem $AX+XB = C$, IEEE T. Autom. Control, 24 (1979), 909–913. https://doi.org/10.1109/TAC.1979.1102170 doi: 10.1109/TAC.1979.1102170 |
[10] | A. Varga, Robust pole assignment via Sylvester equation based state feedback parametrization, IEEE International Symposium on Computer-Aided Control System Design, 57 (2000), 13–18. |
[11] | A. Dmytryshyn, B. $K$å$gstr$ö$m$, Coupled Sylvester-type matrix equations and block diagonalization, SIAM J. Matrix Anal. Appl, 36 (2015), 580–593. https://doi.org/10.1137/151005907 doi: 10.1137/151005907 |
[12] | D. Cheng, H. Qi, Y. Zhao, An Introduction to Semi-tensor Product of Matrices and its Applications, Singapore: World Scientific Publishing Company, 2012. |
[13] | M. R. Xu, Y. Z. Zhang, A. R. Wei, Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling, Control theory and technology, 2 (2014), 187–197. https://doi.org/10.1007/s11768-014-0153-7 doi: 10.1007/s11768-014-0153-7 |
[14] | D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, London: Singapore, 2011. |
[15] | J. Yao, J.-E. Feng, M. Meng, On solutions of the matrix equation $AX = B$ with respect to semi-tensor product, J. Franklin Inst., 353 (2016), 1109–1131. https://doi.org/10.1016/j.jfranklin.2015.04.004 doi: 10.1016/j.jfranklin.2015.04.004 |
[16] | Z. Ji, J. Li, X. Zhou, F. J. Duan, T. Li, On solutions of the matrix equation $AXB = C$ under semi-tensor product, Linear and Multilinear Algebra, 69 (2021), 1935–1963. https://doi.org/10.1080/03081087.2019.1650881 doi: 10.1080/03081087.2019.1650881 |
[17] | R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge: Cambridge University Press, 1991. |
[18] | H. Fan, J.-E. Feng, M. Meng, B. Wang, General decomposition of fuzzy relations: Semi-tensor product approach, Fuzzy Sets and Systems, 384 (2020), 75–90. https://doi.org/10.1016/j.fss.2018.12.012 doi: 10.1016/j.fss.2018.12.012 |
[19] | Y. Yuan, Solving the mixed Sylvester matrix equations by matrix decompositions, C. R. Math. Acad. Sci. Paris, 353 (2015), 1053–1059. https://doi.org/10.1016/j.crma.2015.08.010 doi: 10.1016/j.crma.2015.08.010 |
[20] | Q. W. Wang, Z. H. He, Solvability conditions and general solution for the mixed Sylvester equations, Automatica, 49 (2013), 2713–2719. https://doi.org/10.1016/j.automatica.2013.06.009 doi: 10.1016/j.automatica.2013.06.009 |