Citation: Robert Reynolds, Allan Stauffer. Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function[J]. AIMS Mathematics, 2021, 6(2): 1324-1331. doi: 10.3934/math.2021082
[1] | F. Oberhettinger, Tables of Fourier Transforms and Fourier Transforms of Distributions, 1st ed.; Springer-Verlag, Berlin Heidelberg, 1990. |
[2] | M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York, Dover, 1982. |
[3] | D. H. Bailey, J. M. Borwein, N. J. Calkin, R. Girgensohn, D. R. Luke, V. H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007. |
[4] | D. Bierens de Haan, Nouvelles Tables d'intégrales définies, Amsterdam, 1867 |
[5] | I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 6 Ed, Academic Press, USA, 2000. |
[6] | R. Reynolds, A. Stauffer, A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples, International Mathematical Forum, 15 (2020), 235-244. doi: 10.12988/imf.2020.91272 |