Research article Special Issues

A short note on a extended finite secant series

  • Received: 11 July 2023 Revised: 01 September 2023 Accepted: 13 September 2023 Published: 21 September 2023
  • MSC : 30E20, 33-01, 33-03, 33-04

  • In this paper, a summation formula for a general family of a finite secant sum has been extended by making use of a particularly convenient integration contour method. The main theorem derived from this approach is the finite sum involving the Hurwitz-Lerch zeta function. This theorem for particular values is used to derive the finite product of the fifth roots of the quotient product of the gamma function along with finite sums and functional equations involving trigonometric functions.

    Citation: Robert Reynolds. A short note on a extended finite secant series[J]. AIMS Mathematics, 2023, 8(11): 26882-26895. doi: 10.3934/math.20231376

    Related Papers:

  • In this paper, a summation formula for a general family of a finite secant sum has been extended by making use of a particularly convenient integration contour method. The main theorem derived from this approach is the finite sum involving the Hurwitz-Lerch zeta function. This theorem for particular values is used to derive the finite product of the fifth roots of the quotient product of the gamma function along with finite sums and functional equations involving trigonometric functions.



    加载中


    [1] M. Lerch, Note sur la fonction $\mathfrak{K}(w, x, s) = \sum\limits_{k = 0}^{\infty}\frac{e^{2k\pi i x}}{(w+k)^s}$, Acta Math., 11 (1887), 19–24. https://doi.org/10.1007/BF02612318 doi: 10.1007/BF02612318
    [2] T. Kim, D. S. Kim, H. Lee, J. Kwon, On some summation formulas, Demonstr. Math., 55 (2022). https://doi.org/10.1515/dema-2022-0003
    [3] T. K. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041
    [4] T. Kim, D. S. Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic numbers, Adv. Appl. Math., 148 (2023), 102535. https://doi.org/10.1016/j.aam.2023.102535 doi: 10.1016/j.aam.2023.102535
    [5] J. W. Dettman, Applied Complex Variables, London: Macmillan, 1965.
    [6] E. Kreyszig, Advanced Engineering Mathematics, New York: Wiley, 1983.
    [7] R. Courant, D. Hilbert, Methods of Mathematical Physics, New York: Wiley, 1989.
    [8] L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, $3^{rd}$ edition, New York: McGraw-Hill, 1979.
    [9] R. Reynolds, A. Stauffer, A method for evaluating definite integrals in terms of special functions with examples, Int. Math. Forum, 15 (2020), 235–244. https://doi.org/10.12988/imf.2020.91272 doi: 10.12988/imf.2020.91272
    [10] E. W. Hobson, A Treatise on Plane Trigonometry, United Kingdom: University Press, 1897.
    [11] R. Reynolds, A. Stauffer, Extended Prudnikov sum, AIMS Math., 7 (2022), 18576–18586. https://doi.org/10.3934/math.20221021 doi: 10.3934/math.20221021
    [12] E. Catalan, Sur la constante d'Euler et la fonction de Binet, J. Math. Pures Appl., 1875,209–240.
    [13] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Dordrecht: Kluwer Academic Publishers, 2002.
    [14] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, et al., Digital library of mathematical functions, National Inst. Stan. Tech., 2010. https://doi.org/10.18434/M3167
    [15] A. Erdéyli, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, New York: McGraw-Hill Book Company, 1953.
    [16] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, $6^{th}$ edition, Cambridge: Academic Press, 2000.
    [17] R. Gelca, T. Andreescu, Putnam and Beyond, Berlin: Springer, 2017.
    [18] K. B. Oldham, J. C. Myland, J. Spanier, An Atlas of Functions: With Equator, the Atlas Function Calculator, $2^{nd}$ edition, New York: Springer, 2009.
    [19] J. Knar, Die harmonischen reihen, Archiv Math. Phys., 360 (1864), 41–42.
    [20] N. Nielsen, Handbuch der Theorie der Gammafunktion, Leipzig: Teubner, 1906,
    [21] G. E. Andrews, R. Askey, R. Roy, Special Functions. Encyclopedia of Mathematics and its Applications, Cambridge: Cambridge University Press, 1999.
    [22] R. Vidanus, Expressions for values of the Gamma function, Kyushu J. Math., 59 (2005), 267–283. https://doi.org/10.2206/kyushujm.59.267 doi: 10.2206/kyushujm.59.267
    [23] J. Sándor, L. Tóth, A remark on the gamma function, Elem. Math., 44 (1989), 73–76. https://doi.org/10.5169/seals-41612 doi: 10.5169/seals-41612
    [24] R. Campbell, Les Intégrales Eulériennes et Leurs Applications, Paris: Dunod, 1966.
    [25] W. Magnus, F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, New York: Chelsea, 1949.
    [26] P. A. J. Lewis, Essential Mathematics 9, 2008.
    [27] P. J. Davis, Leonhard euler's integral: A historical profile of the gamma function: In memoriam: Milton abramowitz, Am. Math. Monthly, 66 (1959), 849–869. https://doi.org/10.2307/2309786 doi: 10.2307/2309786
    [28] W. Duke, Ö. Imamoglu, Special values of multiple gamma functions, J. Théorie Nombres Bordeaux, 18 (2006), 113–123. https://doi.org/10.5802/jtnb.536.MR2245878 doi: 10.5802/jtnb.536.MR2245878
    [29] V. S. Adamchik, The multiple gamma function and its application to computation of series, Ramanujan J., 9 (2005), 271–288. https://doi.org/10.1007/s11139-005-1868-3 doi: 10.1007/s11139-005-1868-3
    [30] J. M. Borwein, I. J. Zucker, Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind, IMA J. Numer. Anal., 12 (1992), 519–526. https://doi.org/10.1093/imanum/12.4.519 doi: 10.1093/imanum/12.4.519
    [31] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series: Elementary Functions, New York: Gordon & Breach Science Publishers, 1986.
    [32] A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series: Special Functions, New York: Gordon & Breach Science Publishers, 1986.
    [33] A. Erdélyi, F. G. Tricomi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math., 1 (1951), 133–142.
    [34] F. Oberhettinger, Note on the Lerch zeta function, Pacific J. Math., 6 (1956), 117–120.
    [35] C. J. Malmsten, Om definita integraler mellan imaginära gränsor, K. Vet. Akad. Handl., 3 (1867), 1–18.
    [36] R. Reynolds, A. Stauffer, A Nnote on the infinite sum of the Lerch function, Eur. J. Pure Appl. Math., 15 (2022), 158–168. https://doi.org/10.29020/nybg.ejpam.v15i1.4137 doi: 10.29020/nybg.ejpam.v15i1.4137
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(613) PDF downloads(60) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog