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Abstract: In this paper, a summation formula for a general family of a finite secant sum has been
extended by making use of a particularly convenient integration contour method. The main theorem
derived from this approach is the finite sum involving the Hurwitz-Lerch zeta function. This theorem
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1. Introduction

The finite secant series and the Hurwitz-Lerch zeta function are mathematical concepts that are
used in different areas of mathematics. The finite secant series is a generalization of the regular secant
series, which is defined as the power series expansion of the secant function. The secant function is
the reciprocal of the cosine function, and its series expansion involves powers of the variable raised to
even positive integers. This series expands the secant function using powers of the variable raised to
non-negative real numbers, which allows for a broader range of values. This series is typically used in
mathematical analysis and approximation theory to approximate the secant function for a wider class of
arguments. The Hurwitz-Lerch zeta function, is named after the Czech mathematician Mathias Lerch,
who who published about 250 papers, largely on mathematical analysis and number theory. Lerch’s
transcendental function [1] was introduced in his work in Acta math. 1887. V. 11. P. 19–24. At this
time, he had just started working at the University of Prague. The Hurwitz-Lerch zeta function is a
complex-valued function that generalizes several other mathematical functions, such as the Hurwitz
zeta function and the polylogarithm function. This function has various applications in number theory,
mathematical physics, and special functions theory. It appears in the study of Riemann zeta function,
modular forms, and quantum statistical mechanics, among other areas. It has connections to other
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important functions, such as the polylogarithm function, and the Hurwitz zeta function for special
cases of the parameters involved.

Finite sums involving special functions are of high interest in the science community. A few
notable examples of this interest are exemplified in the work by Kim et al. [2], where a finite
summation formula and an infinite summation formula involving Harmonic numbers of order up to
some order by means of several definite integrals was derived. In the work by Kim et al. [3] an
investigation of some properties, recurrence relations and identities involving degenerate Stirling
numbers of both kinds associated with degenerate hyperharmonic numbers and also with degenerate
Bernoulli, degenerate Euler, degenerate Bell, and degenerate Fubini polynomials was conducted. In
the work by Kim at al. [4] a study of some results on degenerate harmonic numbers, degenerate
hyperharmonic numbers, degenerate Fubi polynomials and degenerate r-Fubini polynomials from a
general identity which is valid for any two formal power series and involves the degenerate r-Stirling
numbers of the second kind was published. Finite secant series and contour integration have various
applications in mathematics and physics. One area where they prove useful is in the calculation of
special functions. By utilizing finite secant series and contour integrals, values of special functions
like the gamma function, Bessel functions, and hypergeometric functions can be determined
numerically. These functions can be expressed in terms of contour integrals, and the residue theorem
is employed to evaluate them accurately. Another significant application lies in the evaluation of real
integrals that are challenging to compute using standard methods. By combining contour integration
techniques with finite secant series, complex integrals can be simplified. Appropriate contour choices
and utilization of the integrand’s properties facilitate the calculation process, ultimately leading to
finite secant series representations. Finite secant series also offer an alternative representation for
certain series, aiding in their analysis and summation. By expressing a given series as a finite secant
series, closed-form expressions can potentially be derived, patterns can be identified, and convergence
properties can be explored.

Contour integration techniques, in conjunction with finite secant series, can be applied to solve
differential equations. Transforming a given differential equation into an integral equation through
contour integration allows for the utilization of finite secant series methods in solving it. This approach
is particularly advantageous when dealing with linear differential equations that have special functions
as solutions. In the realm of theoretical physics, contour integration plays a vital role in the formulation
and evaluation of scattering amplitudes in quantum field theory. Contour integration techniques enable
the calculation of loop integrals encountered in perturbative expansions. Finite secant series offer
compact and efficient representations of these loop integrals, assisting in higher-order calculations in
quantum field theory. While there are numerous references on the applications of finite secant series
and contour integration, here are a few notable sources that provide detailed information are recorded
in [5–8]. In this work, we apply the contour integral method from [9], to the finite sum of the secant
function where the general derivation is given on page 90 in [10], resulting in

−
1

2πi

∫
C

n∑
p=0

2 × 5−paww−k−1(−5 cos(2 × 5p−1(m + w)) + 5 cos(4 × 5p−1(m + w)) + 2) sec(5p(m + w))dw

=
1

2πi

∫
C

5−naww−k−1(sec(5n(m + w)) − 5n+1 sec(
m + w

5
))dw

(1.1)
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where a,m, k ∈ C,Re(m+w) > 0, n ∈ Z+. Using Eq (1.1) the main Theorem to be derived and evaluated
is given by

n∑
p=0

5−p(i5p)keim5p−1
(−5Φ(−e2i5pm,−k,

1
10
−

1
2

i5−p log(a)) + 5e2im5p−1
Φ(−e2i5pm,−k,

3
10
−

1
2

i5−p log(a))

− 4e4im5p−1
Φ(−e2i5pm,−k,

1
2
−

1
2

i5−p log(a)) + 5e6im5p−1
Φ(−e2i5pm,−k,

7
10
−

1
2

i5−p log(a))

− 5e8im5p−1
Φ(−e2i5pm,−k,

9
10
−

1
2

i5−p log(a)))

= 5−k−n((i5n+1)keim5n
Φ(−e2i5nm,−k,

1
2
−

1
2

i5−n log(a))

− ike
im
5 5n+1Φ(−e

2im
5 ,−k,

1
2
−

5
2

i log(a)))
(1.2)

where the variables k, a,m are general complex numbers and n is any positive integer. This new
expression is then used to derive special cases in terms of trigonometric functions. The derivations
follow the method used by us in [9]. This method involves using a form of the generalized Cauchy’s
integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw, (1.3)

where y,w ∈ C and C is in general an open contour in the complex plane where the bilinear
concomitant [9] is equal to zero at the end points of the contour. This method involves using a form of
Eq (1.3) then multiplies both sides by a function, then takes the finite sum of both sides. This yields a
finite sum in terms of a contour integral. Then we multiply both sides of Eq (1.3) by another function
and take the infinite sum of both sides such that the contour integral of both equations are the same.

2. The Hurwitz-Lerch zeta Function

In the Prudnikov paper [11], the contour integral method, [9] was applied to a finite sum involving
the product of the cosecant and cosine functions to derive a generalized finite sum in terms of the
Hurwitz-Lerch zeta function. The variables in the special function were 2 raised to an integer power
times a complex number. In this current paper we are able to expand upon this previous work by
deriving a finite sum involving the Hurwitz-Lerch zeta function with variables involving 5 raised to an
integer power times a complex number. One of the interesting findings of this work is the derivation
of the finite product involving the gamma function. This application of the contour integral method to
finite sum of trigonometric functions is another way deriving these interesting formulae which have
been around since Catalan’s work in 1875 [12]. This method can perhaps be used to generalize these
finite products which in some cases can be extended the infinite case. This work in our opinion can
assist fellow researchers with deriving other closed forms involving finite sums and products of
Hurwitz-Lerch zeta functions and its composite functions. In this work we expand upon previous
work in [11], where a Prudnikov et al. finite sum was extended to derive the Hurwitz-Lerch zeta
function. The contour integral method in [9] was employed to achieve this goal and a similar process
is employed in this current article. This article expands evaluations of the Hurwitz-Lerch zeta
function to functions involving the gamma function which was not present in our previous work.
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Let λ ∈ R and 0 < α ≤ 1. The Hurwitz-Lerch Zeta function L(λ, α, s) given in [13], is defined by

L(λ, α, s) =
∞∑

m=0

e2πiλm

(m + α)s (2.1)

for σ > 1 if λ > 0 if λ < Z. For λ ∈ Z the Hurwitz-Lerch Zeta function reduces to the Hurwitz zeta
function ζ(s, α):

ζ(s, α) =
∞∑

m=0

1
(m + α)s , σ > 1. (2.2)

Moreover, we have L(λ, 1, s) = ζ(s), λ ∈ Z, where ζ(s) denotes the classical Riemann zeta function,

L(λ, 1, s) =
∞∑

m=1

(−1)m−1

ms = ζ(s)(1 − 21−s), (2.3)

and, for k ∈ Z,

L
(
k,

1
2
, s

)
= 2S

∞∑
m=0

1
(2m + 1)s = 2s

ζ(s) −
∞∑

m=1

1
(2m)s

 = 2s(ζ(s) − 2−sζ(s)) = ζ(s)(2s − 1). (2.4)

Thus we see that the Hurwitz-Lerch zeta function is the special case of a general Dirichlet series.

∞∑
m=0

ame−λm s (2.5)

with am = e2πiλm and λm = log(m + α). This Dirichlet series converges uniformly on compact subsets
of the half-plane σ > 1, therefore the Hurwitz-Lerch zeta function is analytic in the latter region. In
more general setting it is assumed that σ > 0.

First we consider the case λ ∈ Z, i.e. we consider the Hurwitz zeta function ζ(s, a). We have the
Eq (5.2.1) in [14] for σ > 0∫ ∞

0
e−(m+α)xxs−1dx =

1
(m + α)s

∫ ∞

0
e−xxs−1dx =

Γ(s)
(m + α)s . (2.6)

Hence, for σ > 1,

Γ(s)ζ(s, α) =
∞∑

m=0

∫ ∞

0
e−(m+α)xxs−1dx =

∫ ∞

0
xs−1

∞∑
m=0

e−(m+α)xdx =
∫ ∞

0

xs−1e−ax

1 − e−x dx. (2.7)

Here the interchange of the order of integration and summation is justified by absolute convergence of
the series

∞∑
m=0

∫ ∞

0
xs−1e−(m+α)xdx = Γ(s)ζ(s, α). (2.8)

Consequently, we have proved that, for σ > 1,

ζ(s, α) =
1
Γ(s)

∫ ∞

0

xs−1e−αx

1 − e−x dx. (2.9)
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With the conditions of (25.14.1) in [14] and m = 1, 2, 3, ...,

Φ(z, s, a) =
1
Γ(s)

∫ ∞

0

xs−1e−ax

1 − ze−x dx (2.10)

where Re(s) > 1, Re(a) > 0 if z = 1; Re(s) > 0, Re(a) > 0 if z ∈ C \ [0,∞). For these and further
properties see Erdélyi et al. [15], (1953a, pp. 27–31).

3. Contour integral representation for the finite sum of the Hurwitz-Lerch zeta functions

In this section we derive the contour integral representations of the left-hand side and right-hand
side of Eq (1.1) in terms of the Hurwtiz-Lerch zeta and trigonometric functions.

3.1. Derivation of the generalized Hurwitz-Lerch contour integral for the secant function

We use the method in [9]. Using Eq (1.3) we first replace log(a)+ ib(2y+1) and multiply both sides
by −2i(−1)yeibm(2y+1) then take the finite and infinite sums over p ∈ [0, n] and y ∈ [0,∞) and simplify
in terms of the Hurwitz-Lerch zeta function to get

−

n∑
p=0

i2k+1(ib)keibmΦ
(
−e2ibm,−k, b−i log(a)

2b

)
Γ(k + 1)

=
1

2πi

∞∑
y=0

n∑
p=0

∫
C

(−1)yaww−k−1eib(2y+1)(m+w)dw

=
1

2πi

∫
C

n∑
p=0

∞∑
y=0

(−1)yaww−k−1eib(2y+1)(m+w)dw

= −
1

2πi

∫
C

n∑
p=0

iaww−k−1 sec(b(m + w))dw

(3.1)

from Eq (1.232.2) in [16] where Re(w + m) > 0 and Im (m + w) > 0 in order for the sums to converge.
We apply Tonelli’s theorem for multiple sums, see page 177 in [17] as the summands are of bounded
measure over the space C × [0, n] × [0,∞).

3.2. Derivation of a generalized Hurwitz-Lerch zeta function in terms of the product of the cosine and
secant function contour integral

We use the method in [9]. Using a generalization of Cauchy’s integral formula (1.3) we first replace
y by log(a) + ix + y then multiply both sides by emxi then form a second equation by replacing x by −x
and add both equations to get

e−imx
(
e2imx(log(a) + ix + y)k + (log(a) − ix + y)k

)
Γ(k + 1)

=
1

2πi

∫
C

2w−k−1ew(log(a)+y) cos(x(m+w))dw. (3.2)
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Next we replace y by ib(2y+1) and multiply both sides by (−1)yeibm(2y+1) and take the infinite sum over
y ∈ [0,∞) and simplify in terms of the Hurwitz-Lerch zeta function to get

2k(ib)keim(b−x)
(
Φ

(
−e2ibm,−k, b−x−i log(a)

2b

)
+ e2imxΦ

(
−e2ibm,−k, b+x−i log(a)

2b

))
Γ(k + 1)

=
1

2πi

∞∑
y=0

∫
C

2(−1)yaww−k−1eib(2y+1)(m+w) cos(x(m + w))dw

=
1

2πi

∫
C

∞∑
y=0

2(−1)yaww−k−1eib(2y+1)(m+w) cos(x(m + w))dw

=
1

2πi

∫
C

aww−k−1 sec(b(m + w)) cos(x(m + w))dw

(3.3)

from Eqs (1.232.2) and (1.411.3) in [16] where Re(w+m) > 0 and Im (m + w) > 0 in order for the sums
to converge. We apply Tonelli’s theorem for sums and integrals, see page 177 in [17] as the summand
and integral are of bounded measure over the space C × [0,∞).

3.3. Derivation of the contour integrals

In this section we will use Eqs (3.1) and (3.3) by simple substitution to derive the contour integrals
in Eq (1.1).

3.3.1. Derivation of the left-hand first contour integral

Use Eq (3.1) and replace b by 5p then multiply both sides by −4i5−p and take the finite sum over
p ∈ [0, n] to get;

−

n∑
p=0

2k+35−p (i5p)k eim5p
Φ

(
−e2i5pm,−k, 1

25−p (
5p − i log(a)

))
Γ(k + 1)

= −
1

2πi

∫
C

n∑
p=0

4 × 5−paww−k−1 sec (5p(m + w)) dw.

(3.4)

3.3.2. Derivation of the left-hand second contour integral

Use Eq (3.3) and replace x by 2 × 5p−1, b by 5p then multiply both sides by 2 × 51−p and take the
finite sum over p ∈ [0, n] to get:

n∑
p=0

1
Γ(k + 1)

2k+151−p(i5p)keim(5p−2×5p−1)(Φ(−e2i5pm,−k,
1
2

5−p(−i log(a) − 2 × 5p−1 + 5p))

+ e4im5p−1
Φ(−e2i5pm,−k,

1
2

5−p(−i log(a) + 2 × 5p−1 + 5p)))

=
1

2πi

∫
C

n∑
p=0

2 × 51−paww−k−1 cos(2 × 5p−1(m + w)) sec(5p(m + w))dw.

(3.5)
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3.3.3. Derivation of the left-hand third contour integral

Use Eq (3.3) and replace x by 4 × 5p−1, b by 5p then multiply both sides by −2 × 51−p and take the
finite sum over p ∈ [0, n] to get:

−

n∑
p=0

1
Γ(k + 1)

2k+151−p(i5p)keim(5p−4×5p−1)(Φ(−e2i5pm,−k,
1
2

5−p(−i log(a) − 4 × 5p−1 + 5p))

+ e8im5p−1
Φ(−e2i5pm,−k,

1
2

5−p(−i log(a) + 4 × 5p−1 + 5p)))

= −
1

2πi

∫
C

n∑
p=0

2 × 51−paww−k−1 cos
(
4 × 5p−1(m + w)

)
sec (5p(m + w)) dw. (3.6)

3.3.4. Derivation of the right-hand first contour integral

Use Eq (3.1) and replace b by 5n then multiply both sides by −5n/i to get:

2k+15−n (i5n)k eim5n
Φ

(
−e2i5nm,−k, 1

25−n (
5n − i log(a)

))
Γ(k + 1)

=
1

2πi

∫
C

5−naww−k−1 sec (5n(m + w)) dw. (3.7)

3.3.5. Derivation of the right-hand second contour integral

Use Eq (3.1) and replace b by 1/5 then multiply both sides by 5/i to get:

−
ik2k+151−ke

im
5 Φ

(
−e

2im
5 ,−k, 5

2

(
1
5 − i log(a)

))
Γ(k + 1)

= −
1

2πi

∫
C

5aww−k−1 sec
(m + w

5

)
dw. (3.8)

4. Evaluations and derivations involving special functions

The Lerch transcendent or Hurwitz-Lerch zeta function is a special function that appears in number
theory, complex analysis, and other areas of mathematics. Its symbol is Φ(z, s, a). The Hurwitz-Lerch
zeta function is derived in this section by determining the function’s derivatives with respect to the
given variables. We also derive gamma function-related infinite and finite products.

Theorem 4.1. For all k, a,m ∈ C then,
n∑

p=0

5−p(i5p)keim5p−1
(−5Φ(−e2i5pm,−k,

1
10
−

1
2

i5−p log(a))

+ 5e2im5p−1
Φ(−e2i5pm,−k,

3
10
−

1
2

i5−p log(a)) − 4e4im5p−1
Φ(−e2i5pm,−k,

1
2
−

1
2

i5−p log(a))

+ 5e6im5p−1
Φ(−e2i5pm,−k,

7
10
−

1
2

i5−p log(a)) − 5e8im5p−1
Φ(−e2i5pm,−k,

9
10
−

1
2

i5−p log(a)))

= 5−k−n((i5n+1)keim5n
Φ(−e2i5nm,−k,

1
2
−

1
2

i5−n log(a)) − ike
im
5 5n+1Φ(−e

2im
5 ,−k,

1
2
−

5
2

i log(a))).

(4.1)

Proof. Since the addition of the right-hand side of Eqs (3.4)–(3.6) is equal to the addition of right-hand
sides of Eqs (3.7) and (3.8) relative to Eq (1.1), we may equate the left-hand sides to yield the stated
result. □
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Example 4.2. The degenerate case.

n∑
p=0

5−p
(
5 cos

(
2m5p−1

)
− 5 cos

(
4m5p−1

)
− 2

)
sec (m5p) =

1
2

(
5−n sec (m5n) − 5 sec

(m
5

))
. (4.2)

Proof. Use Eq (4.1) and set k = 0 and simplify using entry (2) in Table below (64:12:7) in [18]. □

Example 4.3. Finite product of the fifth roots of product quotient gamma functions.

n∏
p=0

5p

√√√√√√√Γ ( 5−pa
4 +

1
20

)
Γ
(

5−pa
4 +

9
20

)
Γ
(

5−pa
4 +

13
20

)
Γ
(

5−pa
4 +

17
20

) (
Γ( 1

4 (5−pa+1))
Γ( 1

4 (5−pa+3))

)4/5

Γ
(

5−pa
4 +

3
20

)
Γ
(

5−pa
4 +

7
20

)
Γ
(

5−pa
4 +

11
20

)
Γ
(

5−pa
4 +

19
20

)
=

5
5
8−

5−n
8 Γ

(
5a
4 +

1
4

) (
Γ( 1

4 (5−na+3))
Γ( 1

4 (5−na+1))

)5−n−1

Γ
(

5a
4 +

3
4

) .

(4.3)

Proof. Use Eq (4.1) and set m = 0 and simplify to yield the Hurwitz zeta function using entry (4)
in Table below (64:12:7) in [18]. Next we take the first partial derivative with respect to k and set
k = 0 and simplify in terms of the log-gamma function, using Eq (64:10:2) in [18]. Next we take the
exponential function of both sides and simplify in terms of the gamma function. The log Γ(z) is analytic
throughout the complex z plane, except for a single branch cut discontinuity along the negative real
axis. The log(Γ(z)) has a more complex branch cut structure. Similar forms of this interesting formula
are recorded in [19–23]. □

The
√

5 finds its application in diverse fields, including mathematics, physics, engineering, finance,
and computer science. In mathematics, it is extensively used in equations and formulas, particularly in
geometry and trigonometry. It enables the calculation of distances, angles, and proportions in various
geometric shapes and calculations. In physics, the

√
5 plays a role in determining quantities related to

wave propagation, resonance, and harmonic oscillators. Equations that describe wave behavior, such as
those concerning sound waves and electromagnetic waves, incorporate the

√
5. Engineers frequently

employ the
√

5 in vibrations and structural mechanics calculations. It is significant in determining
natural frequencies, resonance points, and damping ratios of mechanical systems. In the realm of
finance, the

√
5 is employed in diverse calculations associated with risk and volatility. For instance, it

is used in calculating the standard deviation, which measures the dispersion of data points from their
mean. Additionally, financial models like the Black-Scholes formula for option pricing utilize the

√
5.

Computer scientists also leverage the
√

5 in algorithms and computational techniques. It is commonly
utilized in numerical analysis and optimization algorithms, where iterative methods may depend on
square root calculations to converge towards desired solutions.

Example 4.4. The product of quotient of gamma functions in terms of the square root of 5. The square
root of 5 and its applications are recorded in the works of Campbell [24], Magnus et al. [25] and
Lewis [26].

Γ
(

a
4 +

1
20

)
Γ
(

a
4 +

1
4

)
Γ
(

a
4 +

9
20

)
Γ
(

a
4 +

13
20

)
Γ
(

a
4 +

17
20

)
Γ
(

5a
4 +

3
4

)
Γ
(

a
4 +

3
20

)
Γ
(

a
4 +

7
20

)
Γ
(

a
4 +

11
20

)
Γ
(

a
4 +

3
4

)
Γ
(

a
4 +

19
20

)
Γ
(

5a
4 +

1
4

) = ∫ ∞

−∞

e−
x2
5

√
π

dx =
√

5. (4.4)
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Proof. Use Eq (4.3) and set n = 0 and simplify using Eq (3.323.2) in [16]. □

Example 4.5. The infinite product of the fifth roots of product quotient gamma functions. This
infinite product of the gamma function has also be recorded in the works of Davis [27], Duke [28],
Adamchik [29] and Borwein et al. [30]. The right-hand side of Eq (4.5) can also be used in the
solution of Legendre and related functions and their differential equation form see Eq (14.2.11)
in [14]. The right-hand side of Eq (14.2.11) in [14] can be replaced by an infinite product by setting
u = 5a

4 +
1
2 , v = −

1
4 where the resulting product form is given by Eq (4.5). We can also equate this

infinite product to a double infinite sum. This double infinite sum involving the Laguerre polynomial
is derived by applying the method in [9] to Eqs (5.2.11.17) and (5.11.4.8) in [31] and [32]
respectively.

∞∏
p=0

5p

√√√√√√√Γ ( 5−pa
4 +

1
20

)
Γ
(

5−pa
4 +

9
20

)
Γ
(

5−pa
4 +

13
20

)
Γ
(

5−pa
4 +

17
20

) (
Γ( 1

4 (5−pa+1))
Γ( 1

4 (5−pa+3))

)4/5

Γ
(

5−pa
4 +

3
20

)
Γ
(

5−pa
4 +

7
20

)
Γ
(

5−pa
4 +

11
20

)
Γ
(

5−pa
4 +

19
20

)
=

∫ ∞

0

55/8x
5a
4 −

3
4 (x + 1)−

5a
4 −

3
4

√
π

dx

=

∞∑
p=0

∞∑
q=0

4 × 55/8(−1)p(πa + α)
5
4−

a
4 (a + 8q + 1)a

1
4 (a−4p−4q−1)π

1
4 (a−4p−4q−1)

(a + 1)(4πa + a + 4α − 1)

×
Γ
(

a+1
4 + q

)
L

1
4 (a−4p+5)
p (α)

Γ(q + 1)Γ
(

1
4 (a − 4p − 4q + 3)

)
=

55/8Γ
(

5a
4 +

1
4

)
Γ
(

1
4 (5a + 3)

) .

(4.5)

Proof. Use Eq (4.3) and take the limit as n→ ∞ and simplify the right-hand side using Eq (2) in [33].
□

-5 -4 -3 -2 -1 1 2
z

-10

-5

5

10

f(z)

Figure 1. Plot of f (z) = 55/8Γ( 1
4 (5z+1))

Γ( 1
4 (5z+3)) , z ∈ R.
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Figure 2. Plot of f (z) = Re
(

55/8Γ( 1
4 (5z+1))

Γ( 1
4 (5z+3))

)
, z ∈ C.

Figure 3. Plot of f (z) = Im
(

55/8Γ( 1
4 (5z+1))

Γ( 1
4 (5z+3))

)
, z ∈ C.

Figure 4. Plot of f (z) = Abs
(

55/8Γ( 1
4 (5z+1))

Γ( 1
4 (5z+3))

)
, z ∈ C.

Example 4.6. A functional equation for the Hurwitz-Lerch zeta function. This type of equation is also
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recoded in the work by Oberhettinger [34].

Φ(z, s, a) = 5−s(Φ(z5, s,
a
5

) + z(Φ(z5, s,
a + 1

5
) + z(Φ(z5, s,

a + 2
5

)

+ z(Φ(z5, s,
a + 3

5
) + zΦ(z5, s,

a + 4
5

))))).
(4.6)

Proof. Use Eq (4.1) and set n = 0 and simplify. Next replace m → 5 log(z)/(2i), k → −s, a → eai and
simplify. Next replace a→ 2(a − 1/2)/5, z = −z and simplify. □

Example 4.7. Special case of the first partial derivative of the Hurwitz-Lerch zeta function in terms of
the log-gamma function. This form is useful in simplifying definite integrals expressed in terms of the
Hurwitz-Lerch zeta function and its derivatives. Definite integrals expressed in terms of the log-gamma
function were first studied by Malmsten [35].

Φ′
( 5√
−1, 0, a

)
= log


Γ
(

a
10

) (
Γ( a+1

10 )
Γ( a+6

10 )

) 5√
−1 (

Γ( a+2
10 )

Γ( a+7
10 )

)(−1)2/5 (
Γ( a+3

10 )
Γ( a+8

10 )

)(−1)3/5 (
Γ( a+4

10 )
Γ( a+9

10 )

)(−1)4/5

10
1
2 i

(√
2
√

5+5−i
)
Γ
(

a+5
10

)
 . (4.7)

Proof. Use Eq (4.6) and set z = i2/5 and simplify in terms of the Hurwitz zeta function using
Eq (25.14.2) in [14] and then take the first partial derivative with respect to s and set s = 0 and
simplify in terms of the log-gamma function using (25.11.18) in [14]. □

Example 4.8. A finite sum involving sine and cosine functions.

n∑
p=0

(
9 sin

(
5p−1x

)
− 7 sin

(
3 × 5p−1x

)
− 3 sin

(
7 × 5p−1x

)
+ sin

(
9 × 5p−1x

)
+ 4 sin (5px)

)
sec2 (5px)

= − sec
( x
5

) (
sin

( x
5

)
sin (5nx) + 1

)
sec2 (5nx)

(
sec

( x
5

)
sin (5nx) − tan

( x
5

))
. (4.8)

Proof. Use Eq (4.1) and set k = 1, a = 1,m = x and simplify. □

Example 4.9. Finite product involving the fifth roots of the product of quotient sine functions.

n∏
p=0


(
sin

(
1
25p−1x

)
+ 1

) (
sin

(
5p−1x

)
− 1

)(
sin

(
1
25p−1x

)
− 1

) (
sin

(
5p−1x

)
+ 1

)


12×5−2p


(
−2 sin

(
1
25p−1x

)
+ 2 cos

(
5p−1x

)
− 1

) (
2 sin

(
5p−1x

)
+ 2 cos

(
2 × 5p−1x

)
− 1

)(
2 sin

(
1
25p−1x

)
+ 2 cos

(
5p−1x

)
− 1

) (
−2 sin

(
5p−1x

)
+ 2 cos

(
2 × 5p−1x

)
− 1

)


5−2p

=

( (
sin

(
5n x

2

)
−1

)
(sin(5n x)+1)

(sin( 5n x
2 )+1)(sin(5n x)−1)

) 5−2n
2 (

cos
(

3x
20

)
− sin

(
x

20

))25

(
sin

(
x

20

)
+ cos

(
3x
20

))25 .

(4.9)

Proof. Use Eq (4.1) and set k = 1, a = 1,m = x and simplify using the method in section (8.1)
in [36]. □
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Example 4.10. The infinite case of the product involving the fifth roots of the product of quotient sine
functions. Note here −1 < Re(x) < 1,−1 < Im(x) < 1.

∞∏
p=0


(
sin

(
1
25p−1x

)
+ 1

) (
sin

(
5p−1x

)
− 1

)(
sin

(
1
25p−1x

)
− 1

) (
sin

(
5p−1x

)
+ 1

)


12×5−2p


(
−2 sin

(
1
25p−1x

)
+ 2 cos

(
5p−1x

)
− 1

) (
2 sin

(
5p−1x

)
+ 2 cos

(
2 × 5p−1x

)
− 1

)(
2 sin

(
1
25p−1x

)
+ 2 cos

(
5p−1x

)
− 1

) (
−2 sin

(
5p−1x

)
+ 2 cos

(
2 × 5p−1x

)
− 1

)


5−2p

=

(
cos

(
3x
20

)
− sin

(
x

20

))25(
sin

(
x

20

)
+ cos

(
3x
20

))25 .

(4.10)

Proof. Use Eq (4.9) and applying the limit as n→ ∞ along with analyzing a plot of the right-hand side
over x ∈ R, we can write down the stated result. □
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Figure 5. Plots of f (n) =
( (

sin
(

5n x
2

)
−1

)
(sin(5n x)+1)

(sin( 5n x
2 )+1)(sin(5n x)−1)

) 5−2n
2

, x ∈ R.

5. Conclusions

In this research paper, we presented formulas using trigonometric and special functions, and
methods that can obtain formulas similar to those previously published previously. Our method is
based on contour integration. The results of numerical calculations for a variety of parameters in
mathematical expressions, including real, imaginary, and complex numbers, were verified with the
help of the Wolfram software Mathematica.

Use of AI tools declaration

The author declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 8, Issue 11, 26882–26895.



26894

Acknowledgements

The author thanks the anonymous referee for helpful comments and suggestions on the initial and
final form of the manuscript.

Conflict of interest

The author declares no conflict of interest with this paper.

References

1. M. Lerch, Note sur la fonction K(w, x, s) =
∞∑

k=0

e2kπix

(w+k)s , Acta Math., 11 (1887), 19–24.

https://doi.org/10.1007/BF02612318
2. T. Kim, D. S. Kim , H. Lee, J. Kwon, On some summation formulas, Demonstr. Math., 55 (2022).

https://doi.org/10.1515/dema-2022-0003
3. T. K. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated

with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75.
https://doi.org/10.1134/S1061920823010041

4. T. Kim, D. S. Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic
numbers, Adv. Appl. Math., 148 (2023), 102535. https://doi.org/10.1016/j.aam.2023.102535

5. J. W. Dettman, Applied Complex Variables, London: Macmillan, 1965.
6. E. Kreyszig, Advanced Engineering Mathematics, New York: Wiley, 1983.
7. R. Courant, D. Hilbert, Methods of Mathematical Physics, New York: Wiley, 1989.
8. L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One

Complex Variable, 3rd edition, New York: McGraw-Hill, 1979.
9. R. Reynolds, A. Stauffer, A method for evaluating definite integrals in terms of special functions

with examples, Int. Math. Forum, 15 (2020), 235–244. https://doi.org/10.12988/imf.2020.91272
10. E. W. Hobson, A Treatise on Plane Trigonometry, United Kingdom: University Press, 1897.
11. R. Reynolds, A. Stauffer, Extended Prudnikov sum, AIMS Math., 7 (2022), 18576–18586.

https://doi.org/10.3934/math.20221021
12. E. Catalan, Sur la constante d’Euler et la fonction de Binet, J. Math. Pures Appl., 1875, 209–240.
13. A. Laurinc̆ikas, R. Garunks̆tis, The Lerch Zeta-Function, Dordrecht: Kluwer Academic Publishers,

2002.
14. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C.

W. Clark, et al., Digital library of mathematical functions, National Inst. Stan. Tech., 2010.
https://doi.org/10.18434/M3167
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