This paper extends the cholera human-to-human direct transmission model from a deterministic to a stochastic framework. This is expressed as mixed system of stochastic and deterministic differential equations. A Lyapunov function is created to investigate the global stability of the stochastic cholera epidemic, which shows the existence of global positivity of the solution using the theory of stopping time. We then find the threshold quantity of the extended stochastic cholera epidemic model. We derive a parametric condition $ \widetilde{R}_0 $, and for additive white noise, we establish sufficient conditions for the extinction and the persistence of the cholera infection. Finally, for a suitable choice of the parameter of the system for $ \widetilde{R}_0 $, we perform numerical simulations for both scenarios of extinction and persistence of the dynamic of the cholera infection.
Citation: Roshan Ara, Saeed Ahmad, Zareen A. Khan, Mostafa Zahri. Threshold dynamics of stochastic cholera epidemic model with direct transmission[J]. AIMS Mathematics, 2023, 8(11): 26863-26881. doi: 10.3934/math.20231375
This paper extends the cholera human-to-human direct transmission model from a deterministic to a stochastic framework. This is expressed as mixed system of stochastic and deterministic differential equations. A Lyapunov function is created to investigate the global stability of the stochastic cholera epidemic, which shows the existence of global positivity of the solution using the theory of stopping time. We then find the threshold quantity of the extended stochastic cholera epidemic model. We derive a parametric condition $ \widetilde{R}_0 $, and for additive white noise, we establish sufficient conditions for the extinction and the persistence of the cholera infection. Finally, for a suitable choice of the parameter of the system for $ \widetilde{R}_0 $, we perform numerical simulations for both scenarios of extinction and persistence of the dynamic of the cholera infection.
[1] | S. Ahmad, M. ur Rahman, M. Arfan, On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator, Chaos Soliton. Fract., 146 (2021), 110892. https://doi.org/10.1016/j.chaos.2021.110892 doi: 10.1016/j.chaos.2021.110892 |
[2] | R. R. Colwell, Global climate and infectious disease: the cholera paradigm, Science, 274 (1996), 2025–2031. https://doi.org/10.1126/science.274.5295.2025 doi: 10.1126/science.274.5295.2025 |
[3] | World Health Organization, Weekly epidemiological record, Cholera vaccines: WHO position paper–August 2017, 92 (2017), 477–498. |
[4] | G. A. Losonsky, Y. Lim, P. Motamedi, L. E. Comstock, J. A. Johnson, J. G. Morris Jr, et al., Vibriocidal antibody responses in North American volunteers exposed to wild-type or vaccine Vibrio cholerae O139: specificity and relevance to immunity, Clin. Diagn. Lab. Immunol., 4 (1997), 264–269. https://doi.org/10.1128/cdli.4.3.264-269.1997 doi: 10.1128/cdli.4.3.264-269.1997 |
[5] | M. A. Khan, S. Ullah, D. L. Ching, I. Khan, S. Ullah, S. Islam, et al., A mathematical study of an epidemic disease model spread by rumors, J. Comput. Theor. Nanos., 13 (2016), 2856–2866. https://doi.org/10.1166/jctn.2016.4929 doi: 10.1166/jctn.2016.4929 |
[6] | I. Ameen, D. Baleanu, H. M. Ali, An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment, Chaos Soliton. Fract., 137 (2020), 109892. https://doi.org/10.1016/j.chaos.2020.109892 doi: 10.1016/j.chaos.2020.109892 |
[7] | T. Khan, S. Ahmad, G. Zaman, Modeling and qualitative analysis of a hepatitis B epidemic model, Chaos, 29 (2019), 103139. https://doi.org/10.1063/1.5111699 doi: 10.1063/1.5111699 |
[8] | M. Roberts, V. Andreasen, A. Lloyd, L. Pellis, Nine challenges for deterministic epidemic models, Epidemics, 10 (2015), 49–53. https://doi.org/10.1016/j.epidem.2014.09.006 doi: 10.1016/j.epidem.2014.09.006 |
[9] | C. Ji, D. Jiang, N. Shi, The behavior of an SIR epidemic model with stochastic perturbation, Stoch. Anal. Appl., 30 (2012), 755–773. https://doi.org/10.1080/07362994.2012.684319 doi: 10.1080/07362994.2012.684319 |
[10] | Y. Bibi Ruhomally, M. Zaid Dauhoo, L. Dumas, Stochastic modelling of marijuana use in Washington: pre- and post-Initiative-502 (I-502), IMA J. Appl. Math., 87 (2022), 1121–1150. https://doi.org/10.1093/imamat/hxac032 doi: 10.1093/imamat/hxac032 |
[11] | A. Raza, M. Rafiq, D. Baleanu, M. S. Arif, Numerical simulations for stochastic meme epidemic model, Adv. Differ. Equ., 2020 (2020), 176. https://doi.org/10.1186/s13662-020-02593-1 doi: 10.1186/s13662-020-02593-1 |
[12] | R. Khasminskii, Stochastic stability of differential equations, Vol. 66, Heidelberg: Springer Berlin, 2012. https://doi.org/10.1007/978-3-642-23280-0 |
[13] | O. A. van Herwaarden, J. Grasman, Stochastic epidemics: major outbreaks and the duration of the endemic period, J. Math. Biology, 33 (1995), 581–601. https://doi.org/10.1007/BF00298644 doi: 10.1007/BF00298644 |
[14] | A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X |
[15] | Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124 |
[16] | Y. Zhao, D. Jiang, D. O'Regan, The extinction and persistence of the stochastic SIS epidemic model with vaccination, Phys. A, 392 (2013), 4916–4927. https://doi.org/10.1016/j.physa.2013.06.009 doi: 10.1016/j.physa.2013.06.009 |
[17] | C. Ji, D. Jiang, The extinction and persistence of a stochastic SIR model, Adv. Differ. Equ., 2017 (2017), 30. https://doi.org/10.1186/s13662-016-1068-z doi: 10.1186/s13662-016-1068-z |
[18] | Y. Song, A. Miao, T. Zhang, X. Wang, J. Liu, Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible, Adv. Differ. Equ., 2018 (2018), 293. https://doi.org/10.1186/s13662-018-1759-8 doi: 10.1186/s13662-018-1759-8 |
[19] | X. B. Zhang, H. F. Huo, H. Xiang, Q. Shi, D. Li, The threshold of a stochastic SIQS epidemic model, Phys. A, 482 (2017), 362–374. https://doi.org/10.1016/j.physa.2017.04.100 doi: 10.1016/j.physa.2017.04.100 |
[20] | J. Q. Zhao, E. Bonyah, B. Yan, M. A. Khan, K. O. Okosun, M. Y. Alshahrani, et al., A mathematical model for the coinfection of Buruli ulcer and cholera, Results Phys., 29 (2021), 104746. https://doi.org/10.1016/j.rinp.2021.104746 doi: 10.1016/j.rinp.2021.104746 |
[21] | J. Wang, S. Liao, A generalized cholera model and epidemic-endemic analysis, J. Biol. Dyn., 6 (2012), 568–589. https://doi.org/10.1080/17513758.2012.658089 doi: 10.1080/17513758.2012.658089 |
[22] | T. Nguiwa, G. G. Kolaye, M. Justin, D. Moussa, G. Betchewe, A. Mohamadou, Dynamic study of $SI_{A}I_{S}QVR-B$ fractional-order cholera model with control strategies in Cameroon Far North Region, Chaos Soliton. Fract., 144 (2021), 110702. https://doi.org/10.1016/j.chaos.2021.110702 doi: 10.1016/j.chaos.2021.110702 |
[23] | X. Zhang, H. Peng, Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching, Appl. Math. Lett., 102 (2020), 106095. https://doi.org/10.1016/j.aml.2019.106095 doi: 10.1016/j.aml.2019.106095 |
[24] | I. M. Elbaz, M. M. El-Awady, Modeling the soft drug epidemic: extinction, persistence and sensitivity analysis, Results Control Optim., 10 (2023), 100193. https://doi.org/10.1016/j.rico.2022.100193 doi: 10.1016/j.rico.2022.100193 |
[25] | F. C. Klebaner, Introduction to stochastic calculus with applications, Imperial College Press, 2012. |
[26] | C. T. Codeço, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1–14. https://doi.org/10.1186/1471-2334-1-1 doi: 10.1186/1471-2334-1-1 |
[27] | Y. M. Marwa, I. S. Mbalawata, S. Mwalili, W. M. Charles, Stochastic dynamics of cholera epidemic model: formulation, analysis and numerical simulation, J. Appl. Math. Phys., 7 (2019), 1097. https://doi.org/10.4236/jamp.2019.75074 doi: 10.4236/jamp.2019.75074 |
[28] | G. T. Tilahun, W. A. Woldegerima, A. Wondifraw, Stochastic and deterministic mathematical model of cholera disease dynamics with direct transmission, Adv. Differ. Equ., 2020 (2020), 670. https://doi.org/10.1186/s13662-020-03130-w doi: 10.1186/s13662-020-03130-w |
[29] | M. Zahri, Numerical treatment of multidimensional stochastic, competitive and evolutionary models, In: A. Boutayeb, Disease prevention and health promotion in developing countries, Cham: Springer, 2020,183–215. https://doi.org/10.1007/978-3-030-34702-4_13 |
[30] | C. Ji, D. Jiang, The extinction and persistence of a stochastic SIR model, Adv. Differ. Equ., 2017 (2017), 30. https://doi.org/10.1186/s13662-016-1068-z doi: 10.1186/s13662-016-1068-z |
[31] | M. Zahri, Barycentric interpolation of interface solution for solving stochastic partial differential equations on non-overlapping subdomains with additive multi-noises, Int. J. Comput. Math., 95 (2018), 645–685. https://doi.org/10.1080/00207160.2017.1297429 doi: 10.1080/00207160.2017.1297429 |
[32] | M. Zahri, Multidimensional Milstein scheme for solving a stochastic model for prebiotic evolution, J. Taib. Univ. Sci., 8 (2014), 186–198. https://doi.org/10.1016/j.jtusci.2013.12.002 doi: 10.1016/j.jtusci.2013.12.002 |
[33] | A. Khan, G. Hussain, M. Zahri, G. Zaman, U. W. Humphries, A stochastic SACR epidemic model for HBV transmission, J. Biol. Dyn., 14 (2020), 788–801. https://doi.org/10.1080/17513758.2020.1833993 doi: 10.1080/17513758.2020.1833993 |
[34] | R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuzf, P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141 (2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115 doi: 10.1016/j.compbiomed.2021.105115 |