In KST, it is always assumed that the knowledge state represents items that an individual can solve in ideal conditions. Namely, the answers of individuals to items can be encoded as either correct or incorrect. The correct answer indicates a complete mastery of the item, but the incorrect answer may indicate a partial mastery of the item. It is reasonable to use a fuzzy knowledge state to represent the partial mastery of items instead of complete mastery. The fuzzy knowledge state of an individual is represented by a fuzzy set in $ \mathcal{F}(Q) $ that the individual is capable of solving. For any fuzzy knowledge state, each item has a value that represents the level of individual mastery of the item. Fuzzy knowledge spaces and fuzzy learning spaces are generalizations of knowledge spaces and learning spaces. The generalization based on partial order is helpful to distinguish the equally informative items, which can directly induce a discriminative fuzzy knowledge structure. It is effective to use fuzzy knowledge spaces and fuzzy learning spaces to assess knowledge and guide further learning. A fuzzy knowledge space and a fuzzy learning space can be faithfully summarized by the fuzzy knowledge basis, since they are union-closed. Any fuzzy knowledge state of a fuzzy knowledge space can be generated by forming the union of some fuzzy knowledge states in the basis. A fuzzy knowledge basis is a generalization of the knowledge basis of a knowledge space.
Citation: Wen Sun. Fuzzy knowledge spaces based on $ \beta $ evaluation criteria[J]. AIMS Mathematics, 2023, 8(11): 26840-26862. doi: 10.3934/math.20231374
In KST, it is always assumed that the knowledge state represents items that an individual can solve in ideal conditions. Namely, the answers of individuals to items can be encoded as either correct or incorrect. The correct answer indicates a complete mastery of the item, but the incorrect answer may indicate a partial mastery of the item. It is reasonable to use a fuzzy knowledge state to represent the partial mastery of items instead of complete mastery. The fuzzy knowledge state of an individual is represented by a fuzzy set in $ \mathcal{F}(Q) $ that the individual is capable of solving. For any fuzzy knowledge state, each item has a value that represents the level of individual mastery of the item. Fuzzy knowledge spaces and fuzzy learning spaces are generalizations of knowledge spaces and learning spaces. The generalization based on partial order is helpful to distinguish the equally informative items, which can directly induce a discriminative fuzzy knowledge structure. It is effective to use fuzzy knowledge spaces and fuzzy learning spaces to assess knowledge and guide further learning. A fuzzy knowledge space and a fuzzy learning space can be faithfully summarized by the fuzzy knowledge basis, since they are union-closed. Any fuzzy knowledge state of a fuzzy knowledge space can be generated by forming the union of some fuzzy knowledge states in the basis. A fuzzy knowledge basis is a generalization of the knowledge basis of a knowledge space.
[1] | P. Anselmi, E. Robusto, L. Stefanutti, Uncovering the best skill multimap by constraining the error probabilities of the gain-loss model, Psychometrika, 77 (2012), 763–781. http://dx.doi.org/10.1007/s11336-012-9286-0 doi: 10.1007/s11336-012-9286-0 |
[2] | P. Anselmi, L. Stefanutti, D. de Chiusole, E. Robusto, The assessment of knowledge and learning in competence spaces: the gain-loss model for dependent skills, Brit. J. Math. Stat. Psy., 70 (2017), 457–479. http://dx.doi.org/10.1111/bmsp.12095 doi: 10.1111/bmsp.12095 |
[3] | E. Bartl, R. Belohlavek, Knowledge spaces with graded knowledge states, Inform. Sciences, 181 (2011), 1426–1439. http://dx.doi.org/10.1016/j.ins.2010.11.040 doi: 10.1016/j.ins.2010.11.040 |
[4] | G. Birkhoff, Rings of sets, Duke Math. J., 3 (1937), 443–454. http://dx.doi.org/10.1215/S0012-7094-37-00334-X |
[5] | G. Birkhoff, Lattice theory, 3 Eds., Providence: American Mathematical Society, 1967. |
[6] | E. Cosyn, N. Thiery, A practical procedure to build a knowledge structure, J. Math. Psychol., 44 (2000), 383–407. http://dx.doi.org/10.1006/jmps.1998.1252 doi: 10.1006/jmps.1998.1252 |
[7] | E. Cosyn, H. Uzun, Note on two necessary and sufficient axioms for a well-graded knowledge space, J. Math. Psychol., 53 (2009), 40–42. http://dx.doi.org/10.1016/j.jmp.2008.09.005 doi: 10.1016/j.jmp.2008.09.005 |
[8] | J. Doignon, J. Falmagne, Spaces for the assessment of knowledge, International Journal of Man-Machine Studies, 23 (1985), 175–196. http://dx.doi.org/10.1016/S0020-7373(85)80031-6 doi: 10.1016/S0020-7373(85)80031-6 |
[9] | J. Doignon, J. Falmagne, Well-graded families of relations, Discrete Math., 173 (1997), 35–44. http://dx.doi.org/10.1016/S0012-365X(96)00095-7 doi: 10.1016/S0012-365X(96)00095-7 |
[10] | J. Doignon, J. Falmagne, Knowledge spaces, Berlin: Springer, 1999. http://dx.doi.org/10.1007/978-3-642-58625-5 |
[11] | C. Dowling, On the irredundant generation of knowledge spaces, J. Math. Psychol., 37 (1993), 49–62. http://dx.doi.org/10.1006/jmps.1993.1003 doi: 10.1006/jmps.1993.1003 |
[12] | J. Falmagne, A latent trait theory via a stochastic learning theory for a knowledge space, Psychometrika, 54 (1989), 283–303. http://dx.doi.org/10.1007/BF02294521 doi: 10.1007/BF02294521 |
[13] | J. Falmagne, M. Koppen, M. Villano, J. Doignon, L. Johanessen, Introduction to knowledge spaces: how to build, test and search them, Psychol. Rev., 97 (1990), 204–224. http://dx.doi.org/10.1037/0033-295X.97.2.201 doi: 10.1037/0033-295X.97.2.201 |
[14] | J. Falmagne, J. Doignon, Learning spaces: interdisciplinary applied mathematics, Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-01039-2 |
[15] | J. Falmagne, D. Albert, C. Doble, D. Eppstein, X. Hu, Knowledge spaces: applications in education, Berlin: Springer, 2013. http://dx.doi.org/10.1007/978-3-642-35329-1 |
[16] | J. Falmagne, J. Doignon, A Markovian procedure for assessing the state of a system, J. Math. Psychol., 32 (1988), 232–258. http://dx.doi.org/10.1016/0022-2496(88)90011-9 doi: 10.1016/0022-2496(88)90011-9 |
[17] | Z. Gong, B. Sun, D. Chen, Rough set theory for the interval-valued fuzzy information systems, Inform. Sciences, 178 (2008), 1968–1985. http://dx.doi.org/10.1016/j.ins.2007.12.005 doi: 10.1016/j.ins.2007.12.005 |
[18] | J. Heller, A formal framework for characterizing querying algorithms, J. Math. Psychol., 48 (2004), 1–8. http://dx.doi.org/10.1016/j.jmp.2003.10.003 doi: 10.1016/j.jmp.2003.10.003 |
[19] | J. Heller, F. Wickelmaier, Minimum discrepancy estimation in probabilistic knowledge structures, Electronic Notes in Discrete Mathematics, 42 (2013), 49–56. http://dx.doi.org/10.1016/j.endm.2013.05.145 doi: 10.1016/j.endm.2013.05.145 |
[20] | J. Heller, T. Augustin, C. Hockemeyer, L. Stefanutti, D. Albert, Recent developments in competence-based knowledge space theory, In: Knowledge spaces, Berlin: Springer-Verlag, 2013,243–286. http://dx.doi.org/10.1007/978-3-642-35329-1_12 |
[21] | J. Heller, L. Stefanutti, P. Anselmi, E. Robusto, On the link between cognitive diagnostic models and knowledge space theory, Psychometrika, 80 (2015), 995–1019. http://dx.doi.org/10.1007/s11336-015-9457-x doi: 10.1007/s11336-015-9457-x |
[22] | J. Heller, Identifiability in probabilistic knowledge structures, J. Math. Psychol., 77 (2017), 46–57. http://dx.doi.org/10.1016/j.jmp.2016.07.008 doi: 10.1016/j.jmp.2016.07.008 |
[23] | J. Heller, Generalizing quasi-ordinal knowledge spaces to polytomous items, J. Math. Psychol., 101 (2021), 102515. http://dx.doi.org/10.1016/j.jmp.2021.102515 doi: 10.1016/j.jmp.2021.102515 |
[24] | M. Kambouri, M. Koppen, M. Villano, J. Falmagne, Knowledge assessment: tapping human expertise by the query routine, Int. J. Hum.-Comput. St., 40 (1994), 119–151. http://dx.doi.org/10.1006/ijhc.1994.1006 doi: 10.1006/ijhc.1994.1006 |
[25] | M. Koppen, Extracting human expertise for constructing knowledge spaces: an algorithm, J. Math. Psychol., 37 (1993), 1–20. http://dx.doi.org/10.1006/jmps.1993.1001 doi: 10.1006/jmps.1993.1001 |
[26] | K. Korossy, Modeling knowledge as competence and performance, In: Knowledge spaces, New York: Psychology Press, 1999,115–144. |
[27] | A. Rusch, R. Wille, Knowledge spaces and formal concept analysis, In: Data analysis and information systems, Berlin: Springer, 1996,427–436. http://dx.doi.org/10.1007/978-3-642-80098-6_36 |
[28] | M. Schrepp, A generalization of knowledge space theory to problems with more than two answer alternatives, J. Math. Psychol., 41 (1997), 237–243. http://dx.doi.org/10.1006/jmps.1997.1169 doi: 10.1006/jmps.1997.1169 |
[29] | A. Spoto, L. Stefanutti, G. Vidotto, On the unidentifiability of a certain class of skill map based probabilistic knowledge structures, J. Math. Psychol., 56 (2012), 248–255. http://dx.doi.org/10.1016/j.jmp.2012.05.001 doi: 10.1016/j.jmp.2012.05.001 |
[30] | A. Spoto, L. Stefanutti, On the necessary and sufficient conditions for delineating forward-and backward-graded knowledge structures from skill maps, J. Math. Psychol., 99 (2020), 102451. http://dx.doi.org/10.1016/j.jmp.2020.102451 doi: 10.1016/j.jmp.2020.102451 |
[31] | L. Stefanutti, D. de Chiusole, On the assessment of learning in competence based knowledge space theory, J. Math. Psychol., 80 (2017), 22–32. http://dx.doi.org/10.1016/j.jmp.2017.08.003 doi: 10.1016/j.jmp.2017.08.003 |
[32] | L. Stefanutti, P. Anselmi, D. de Chiusole, A. Spoto, On the polytomous generalization of knowledge space theory, J. Math. Psychol., 94 (2020), 102306. http://dx.doi.org/10.1016/j.jmp.2019.102306 doi: 10.1016/j.jmp.2019.102306 |
[33] | L. Stefanutti, A. Spoto, BLIM's identifiability and parameter invariance under backward and forward transformations, J. Math. Psychol., 95 (2020), 102314. http://dx.doi.org/10.1016/j.jmp.2019.102314 doi: 10.1016/j.jmp.2019.102314 |
[34] | L. Stefanutti, D. de Chiusole, M. Gondan, A. Maurer, Modeling misconceptions in knowledge space theory, J. Math. Psychol., 99 (2020), 102435. http://dx.doi.org/10.1016/j.jmp.2020.102435 doi: 10.1016/j.jmp.2020.102435 |
[35] | W. Sun, J. Li, X. Ge, Y. Lin, Knowledge structures delineated by fuzzy skill maps, Fuzzy Set. Syst., 407 (2021), 50–66. http://dx.doi.org/10.1016/j.fss.2020.10.004 doi: 10.1016/j.fss.2020.10.004 |
[36] | W. Sun, J. Li, F. Lin, Z. He, Constructing polytomous knowledge structures from fuzzy skills, Fuzzy Set. Syst., 461 (2023), 108395. http://dx.doi.org/10.1016/j.fss.2022.09.003 doi: 10.1016/j.fss.2022.09.003 |
[37] | W. Sun, J. Li, Z. He, X. Ge, Y. Lin, Well-graded polytomous knowledge structures, J. Math. Psychol., 114 (2023), 102770. http://dx.doi.org/10.1016/j.jmp.2023.102770 doi: 10.1016/j.jmp.2023.102770 |
[38] | L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X |
[39] | L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sciences, 8 (1975), 199–249. http://dx.doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5 |