Research article

Dynamics of a nonlinear state-dependent feedback control ecological model with fear effect

  • Received: 17 June 2024 Revised: 05 August 2024 Accepted: 05 August 2024 Published: 16 August 2024
  • MSC : 34D23, 37N25, 93C27

  • Integrated pest management is a pest control strategy that combines biological and chemical methods to reduce environmental pollution and protect biodiversity. Recent research indicated that the fear caused by predators had a significant effect on the growth, development, and reproductive processes of prey. Therefore, we have proposed a pest-natrual enemy system, which is a nonlinear state-dependent feedback control model that incorporated the fear effect in the predator-prey relationship. We discussed impulsive sets and phase sets of the model and derived an expression for the Poincaré map. Furthermore, we analyzed the existence and stability of order-$ 1 $ periodic solutions and explored the existence of order-$ k $ $ (k\ge2) $ periodic solutions. Finally, numerical simulations were conducted to validate our theoretical results and reveal their biological implications.

    Citation: Zhanhao Zhang, Yuan Tian. Dynamics of a nonlinear state-dependent feedback control ecological model with fear effect[J]. AIMS Mathematics, 2024, 9(9): 24271-24296. doi: 10.3934/math.20241181

    Related Papers:

  • Integrated pest management is a pest control strategy that combines biological and chemical methods to reduce environmental pollution and protect biodiversity. Recent research indicated that the fear caused by predators had a significant effect on the growth, development, and reproductive processes of prey. Therefore, we have proposed a pest-natrual enemy system, which is a nonlinear state-dependent feedback control model that incorporated the fear effect in the predator-prey relationship. We discussed impulsive sets and phase sets of the model and derived an expression for the Poincaré map. Furthermore, we analyzed the existence and stability of order-$ 1 $ periodic solutions and explored the existence of order-$ k $ $ (k\ge2) $ periodic solutions. Finally, numerical simulations were conducted to validate our theoretical results and reveal their biological implications.



    加载中


    [1] Wangersky, J. Peter, Lotka-Volterra population models, Annu. Rev. Ecol. Syst., 9 (1978), 189–218. https://www.jstor.org/stable/2096748
    [2] B. Liu, Y. Zhang, L. Chen, Dynamic complexities of a Holling Ⅰ predator–prey model concerning periodic biological and chemical control, Chaos Soliton. Fract., 22 (2004), 123–134. https://doi.org/10.1016/j.chaos.2003.12.060 doi: 10.1016/j.chaos.2003.12.060
    [3] X. Liu, L. Chen, Complex dynamics of Holling type Ⅱ Lotka–Volterra predator–prey system with impulsive perturbations on the predator, Chaos Soliton. Fract., 16 (2003), 311–320. https://doi.org/10.1016/S0960-0779(02)00408-3 doi: 10.1016/S0960-0779(02)00408-3
    [4] X. Xu, Y. Qiu, X. Chen, H. Zhang, Z. Liang, B. Tian, Bifurcation analysis of a food chain chemostat model with Michaelis-Menten functional response and double delays, AIMS Math., 7 (2022), 12154–12176. https://doi.org/10.3934/math.2022676 doi: 10.3934/math.2022676
    [5] J. H. P. Dawes, M. O. Souza, A derivation of Holling's type Ⅰ, Ⅱ and Ⅲ functional responses in predator–prey systems, J. Theor. Biol., 327 (2013), 11–22. https://doi.org/10.1016/j.jtbi.2013.02.017 doi: 10.1016/j.jtbi.2013.02.017
    [6] T. Namba, Y. Takeuchi, M. Banerjee, Stabilizing effect of intra-specific competition on prey-predator dynamics with intraguild predation, Math. Model. Nat. Pheno., 13 (2018), 29. https://doi.org/10.1051/mmnp/2018033 doi: 10.1051/mmnp/2018033
    [7] A. Yousef, A. A. Thirthar, A. L. Alaoui, P. Panja, T. Abdeljawad, The hunting cooperation of a predator under two prey's competition and fear-effect in the prey-predator fractional-order model, AIMS Math., 7 (2022), 5463–5479. https://doi.org/10.3934/math.2022303 doi: 10.3934/math.2022303
    [8] B. Tang, Y. Xiao, Bifurcation analysis of a predator–prey model with anti-predator behaviour, Chaos Soliton. Fract., 70 (2015), 58–68. https://doi.org/10.1016/j.chaos.2014.11.008 doi: 10.1016/j.chaos.2014.11.008
    [9] L. Y. Zanette, A. F. White, M. C. Allen, et al., Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. http://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
    [10] S. Eggers, M. Griesser, J. Ekman, Predator-induced plasticity in nest visitation rates in the Siberian jay (Perisoreus infaustus), Behav. Ecol., 16 (2005), 309–315. https://doi.org/10.1093/beheco/arh163 doi: 10.1093/beheco/arh163
    [11] C. K. Ghalambor, S. I. Peluc, T. E. Martin, Plasticity of parental care under the risk of predation: How much should parents reduce care?, Biol. Letters., 9 (2013), 20130154. https://doi.org/10.1098/rsbl.2013.0154 doi: 10.1098/rsbl.2013.0154
    [12] F. Hua, J. R. J. Fletcher, K. E. Sieving, R. M. Dorazio, Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring, P. Roy. Soc. B-biol. Sci., 280 (2013), 20130762. https://doi.org/10.1098/rspb.2013.0762 doi: 10.1098/rspb.2013.0762
    [13] F. Hua, K. E. Sieving, J. R. J. Fletcher, C. A. Wright, Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance, Behav. Ecol., 25 (2014), 509–519. https://doi.org/10.1093/beheco/aru017 doi: 10.1093/beheco/aru017
    [14] J. J. Fontaine, T. E. Martin, Parent birds assess nest predation risk and adjust their reproductive strategies, Ecol. Lett., 9 (2006), 428–434. https://doi.org/10.1111/j.1461-0248.2006.00892.x doi: 10.1111/j.1461-0248.2006.00892.x
    [15] S. Creel, D. Christianson, S. Liley, J. A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science, 315 (2007), 960–960. http://doi.org/10.1126/science.1135918 doi: 10.1126/science.1135918
    [16] M. J. Sheriff, C. J. Krebs, R. Boonstra, The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares, J. Anim. Ecol., 78 (2009), 1249–1258. https://doi.org/10.1111/j.1365-2656.2009.01552.x doi: 10.1111/j.1365-2656.2009.01552.x
    [17] A. J. Wirsing, W. J. Ripple, A comparison of shark and wolf research reveals similar behavioral responses by prey, Front. Ecol. Environ., 9 (2011), 335–341. https://doi.org/10.1890/090226 doi: 10.1890/090226
    [18] M. A. McPeek, M. Grace, J. M. L. Richardson, Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies, Ecology, 82 (2001), 1535–1545. https://doi.org/10.1890/0012-9658(2001)082[1535:PABRTP]2.0.CO;2 doi: 10.1890/0012-9658(2001)082[1535:PABRTP]2.0.CO;2
    [19] G. Kunert, W. W. Weisser, The interplay between density-and trait-mediated effects in predator-prey interactions: A case study in aphid wing polymorphism, Oecologia, 135 (2003), 304–312. https://doi.org/10.1007/s00442-003-1185-8 doi: 10.1007/s00442-003-1185-8
    [20] E. B. Mondor, B. D. Roitberg, Pea aphid, Acyrthosiphon pisum, cornicle ontogeny as an adaptation to differential predation risk, Can. J. Zool., 80 (2002), 2131–2136. https://doi.org/10.1139/z02-209 doi: 10.1139/z02-209
    [21] Y. Xue, Impact of both-density-dependent fear effect in a Leslie–Gower predator–prey model with Beddington–DeAngelis functional response, Chaos Soliton. Fract., 185 (2024), 115055. https://doi.org/10.1016/j.chaos.2024.115055 doi: 10.1016/j.chaos.2024.115055
    [22] S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex., 39 (2019), 100770. https://doi.org/10.1016/j.ecocom.2019.100770 doi: 10.1016/j.ecocom.2019.100770
    [23] Y. Xue, F. Chen, X. Xie, S. Chen, An analysis of a predator-prey model in which fear reduces prey birth and death rates, AIMS Math., 9 (2024), 12906–12927. https://doi.org/10.3934/math.2024630 doi: 10.3934/math.2024630
    [24] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator–prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [25] J. Mei, S. Wang, X. Xia, W. Wang, An economic model predictive control for knowledge transmission processes in multilayer complex networks, IEEE. T. Cybernetics., 54 (2022), 1442–1455. https://doi.org/10.1109/TCYB.2022.3204568 doi: 10.1109/TCYB.2022.3204568
    [26] C. Li, S. Tang, Analyzing a generalized pest-natural enemy model with nonlinear impulsive control, Open. Math., 16 (2018), 1390–1411. https://doi.org/10.1515/math-2018-0114 doi: 10.1515/math-2018-0114
    [27] J. Mei, S. Wang, D. Xia, J. Hu, Global stability and optimal control analysis of a knowledge transmission model in multilayer networks, Chaos Soliton. Fract., 164 (2022), 112708. http://dx.doi.org/10.1016/j.chaos.2022.112708 doi: 10.1016/j.chaos.2022.112708
    [28] Y. Tian, S. Tang, R. A. Cheke, Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases, Math. Model. Anal., 24 (2019), 134–154. https://doi.org/10.3846/mma.2019.010 doi: 10.3846/mma.2019.010
    [29] S. Wang, J. Mei, D. Xia, Z. Yang, J. Hu, Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control, Chaos Soliton. Fract., 164 (2022), 112724. http://dx.doi.org/10.1016/j.chaos.2022.112724 doi: 10.1016/j.chaos.2022.112724
    [30] S. Tang, L. Chen, Modelling and analysis of integrated pest management strategy, Discrete. Cont. Dyn-B., 4 (2004), 759–768. https://doi.org/10.3934/dcdsb.2004.4.759 doi: 10.3934/dcdsb.2004.4.759
    [31] L. S. Chen, H. D. Cheng, Modeling of integrated pest control drives the rise of semi-continuous dynamical system theory, Int. Math. Model. Appl., 10 (2021), 1–16. http://dx.doi.org/10.19943/j.2095-3070.jmmia.2021.01.01 doi: 10.19943/j.2095-3070.jmmia.2021.01.01
    [32] P. F. J. Wolf, J. A. Verreet, An integrated pest management system in Germany for the control of fungal leaf diseases in sugar beet: The IPM sugar beet model, Plant. Dis., 86 (2002), 336–344. https://doi.org/10.1094/PDIS.2002.86.4.336 doi: 10.1094/PDIS.2002.86.4.336
    [33] S. Tang, R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257–292. https://doi.org/10.1007/s00285-004-0290-6 doi: 10.1007/s00285-004-0290-6
    [34] X. Song, Z. Xiang, The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects, J. Theor. Biol., 242 (2006), 683–698. https://doi.org/10.1016/j.jtbi.2006.05.002 doi: 10.1016/j.jtbi.2006.05.002
    [35] J. Yang, S. Tang, Holling type Ⅱ predator–prey model with nonlinear pulse as state-dependent feedback control, J. Comput. Appl. Math., 291 (2016), 225–241. https://doi.org/10.1016/j.cam.2015.01.017 doi: 10.1016/j.cam.2015.01.017
    [36] Y. Tian, S. Tang, R. A. Cheke, Nonlinear state-dependent feedback control of a pest-natural enemy system, Nonlinear. Dynam., 94 (2018), 2243–2263. https://doi.org/10.1007/s11071-018-4487-4 doi: 10.1007/s11071-018-4487-4
    [37] S. Y. Tang, W. H. Pang, On the continuity of the function describing the times of meeting impulsive set and its application, Math. Biosci. Eng., 14 (2017), 1399–1406. http://dx.doi.org/10.3934/mbe.2017072 doi: 10.3934/mbe.2017072
    [38] C. Li, S. Tang, R. A. Cheke, Complex dynamics and coexistence of period-doubling and period-halving bifurcations in an integrated pest management model with nonlinear impulsive control, Adv. Differ. Equ-NY., 2020 (2020), 1–23. https://doi.org/10.1186/s13662-020-02971-9 doi: 10.1186/s13662-020-02971-9
    [39] I. U. Khan, S. Y. Tang, The impulsive model with pest density and its change rate dependent feedback control, Discrete Dyn. Nat. Soc., 1 (2020), 4561241. https://doi.org/10.1155/2020/4561241 doi: 10.1155/2020/4561241
    [40] V. Křivan, Effects of optimal antipredator behavior of prey on predator–prey dynamics: The role of refuges, Theor. Popul. Biol., 53 (1998), 131–142. https://doi.org/10.1006/tpbi.1998.1351 doi: 10.1006/tpbi.1998.1351
    [41] H. Zhang, Y. Cai, S. Fu, W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
    [42] H. Molla, S. Sarwardi, M. Haque, Dynamics of adding variable prey refuge and an Allee effect to a predator–prey model, Alex. Eng. J., 61 (2022), 4175–4188. https://doi.org/10.1016/j.aej.2021.09.039 doi: 10.1016/j.aej.2021.09.039
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(407) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog