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Abstract: Integrated pest management is a pest control strategy that combines biological and
chemical methods to reduce environmental pollution and protect biodiversity. Recent research
indicated that the fear caused by predators had a significant effect on the growth, development, and
reproductive processes of prey. Therefore, we have proposed a pest-natrual enemy system, which is a
nonlinear state-dependent feedback control model that incorporated the fear effect in the predator-prey
relationship. We discussed impulsive sets and phase sets of the model and derived an expression for
the Poincaré map. Furthermore, we analyzed the existence and stability of order-1 periodic solutions
and explored the existence of order-k (k ≥ 2) periodic solutions. Finally, numerical simulations were
conducted to validate our theoretical results and reveal their biological implications.
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1. Introduction

The relationship between predation and prey is one of the focal points in ecological research. As
is well known, Lotka and Volterra independently proposed the famous Lotka-Volterra model, which
has played an important role in describing the relationship between predators and prey [1]. However,
as the model was applied in practice, scientists discovered that it also had some shortcomings, which
are mainly reflected in the assumption that the number of prey eaten by a predator per unit time is
linearly related, and this assumption is not reasonable when the number of prey is large. To address
these issues, many scholars have improved the Lotka-Volterra model and introduced various functional
response functions that more accurately simulate predation phenomena and made the model closer to
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reality [2–5]. In addition to the relationships of predation and prey, intraspecific competition is also an
important factor affecting the change of biological populations, so many researchers have taken into
account intraspecific competition while analyzing the interactions between species [6–8].

Predators play a crucial role in ecosystems, shaping communities through a chain reaction of “who
eats whom”. However, recent research has revealed that the fear of being “eaten” can impact individual
behaviors and even entire ecosystems, not just the act of being consumed. Zanette et al. conducted
simulations on song sparrows and observed that predator-induced fear led to a significant reduction
(up to 40%) in the number of offspring produced by these sparrows [9]. Similar evidence exists
for other bird species [10–14], elk [15], snowshoe hare [16], and dugongs [17], demonstrating the
impact of fear on population size. Insects can also be influenced by natural enemies. For instance,
researchers demonstrated that the presence of a natural enemy causes two species of dragonflies,
Enallagma cyathigerum and Ischnura rufostigma, to reduce their food intake, resulting in slower growth
rates [18]. When aphids detect the presence of their natural enemy Hippodamiaconvergens, they
produce more winged aphids as a defense mechanism against predation by Hippodamiaconvergens
[19]. Furthermore, it was discovered that even after the departure of Hippodamiaconvergens, aphids
continue to sense its scent and consequently increase the production of winged aphid offspring [20].
As a result, numerous scholars have conducted research on prey-predator relationships incorporating
fear effects and have obtained rich biological conclusion [21–23].

In 2016, Wang, Zanette, and Zou proposed a predator–prey model incorporating the cost of fear
into prey reproduction [24], and the model is as follows:

dx
dt
=

r0x
1 + ky

− dx − ax2 −
pxy

1 + qx
,

dy
dt
=

cpxy
1 + qx

− my.
(1.1)

where x(t) and y(t) denote the population densities of prey and predators, and r0 is the intrinsic growth
rate of the prey. In addition, d is the natural mortality rate of the prey and a denotes the mortality
rate due to intraspecific competition of the prey, and k denotes the level of fear (the level of fear
reflected in the prey’s fear of the predator and, hence, anti-predator behavior). px

1+qx is the Holling type
II functional response function, c is the efficiency of biological energy conversion, and m represents the
mortality rate of predators. The dynamical behaviour of the system (1.1) has been studied detailedly in
literature [24].

Integrated pest management (IPM) was first proposed by the Food and Agriculture Organization
of the United Nations in 1996. IPM is a comprehensive approach to pest management that utilizes
appropriate techniques and methods based on the population dynamics of pests and their environmental
relationships, aiming to maintain pest populations below the economic threshold. IPM includes
chemical control (spraying pesticide), biological control (the utilization of biometabolites, parasites),
agricultural control (crop rotation, adjustment of planting periods), physical control measures, and
more. In recent years, agricultural monitoring and early warning, model prediction, optimal control,
and complex network technologies have played an important role in protecting the ecological
environment and promoting agricultural development [25–29]. IPM uses information technology
to achieve more intelligent agricultural production management. Some scholars have developed
biological mathematical models based on the biological background and mathematical principles of
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IPM [30–33]. In these IPM models, differential systems with state-dependent impulses exhibits both
continuous and discrete characteristics. Therefore, it is very suitable for portraying the interaction
between pests and natural enemies, pesticide spraying, releasing of natural enemies, and so on.
Literature [34–36] shows that the state-dependent feedback control model can effectively analyze the
dynamic behavior of pests and natural enemies under the interference of the external environment and
provide a theoretical basis for establishing a more optimized control strategy.

In the context of the above knowledge, we take the integrated control tactics into account for model
(1.1). Then, model (1.1) becomes:

dx(t)
dt
=

r0x
1 + ky

− dx − ax2 −
pxy

1 + qx
,

dy(t)
dt
=

cpxy
1 + qx

− my,

 x(t) < ET ,

x(t+) =
[
1 −

δx(t)
x(t) + β

]
x(t),

y(t+) = y(t) +
τ

1 + θy(t)
,

 x(t) = ET .

(1.2)

If the density of the pest population is below the economic threshold ET , the pest-predator system is
not affected by external chemical and biological control, and the first two equations of (1.2) reflect the
rate of change of the pest and predator in their interactions within this stage. Once the density of the
pest population reaches ET , we take chemical and biological approaches, i.e., spraying insecticides and
releasing natural enemies at the same time. The third equation of system (1.2) indicates that the density
of pests is impulsive reduced to (1− δx(t)

x(t)+β )x(t) by poisoning with chemicals, and the fourth equation of
system (1.2) means that the density of natural enemies is impulsive increased to y(t)+ τ

1+θy(t) by artificial
breeding and releases. Here, δ > 0 is defined as the maximum kill rate of the pests with the use of
insecticides, β > 0 is the half-saturation constant, and θ > 0 denotes the parameter for regulating the
density of the natural enemy. τ > 0 is the number of natural enemies to be released. Obviously, τ is the
maximum number of natural enemies released. The third and fourth equations of system (1.2) reflect
the density dependence of the implementation of the control strategy. Some previous models mainly
focus on the linear impulses, in which the number of natural enemies released is a constant in the
models no matter how large the natural enemies and pests remain in the field. However, in this work,
we introduced the nonlinear state-dependent feedback control strategy, which shows that the instant
killing rate of insecticide and the number of natural enemies released depend on their density, and this
is the characteristic of system (1.2). Combined with the “fear effect” of biological populations, next
we will study the global dynamical behavior of the model (1.2) and to reveal how the main parameters
of the model (1.2) affect the dynamics of the system.

To do this, we first summarize the key properties of the corresponding ordinary differential equation
(ODE) system (1.1) in the case of no external interference, and then construct the impulsive sets and
phase sets in relation to impulsive differential equations (1.2) by using the basic theory of the impulsive
semi-dynamic system. The existence and stability of order-1 periodic solutions for τ = 0 and τ > 0
have been addressed and the existence of order-k (k > 1) periodic solutions are discussed. Furthermore,
numerical simulations are conducted to validate our theoretical findings, and biological significance are
discussed. All the results can help us to further understand and give insight into the dynamic complexity
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of the predator-prey biological system with nonlinear impulsive control.

2. Analytical formula and properties for the Poincaré map

The main conclusions of literature [24] for the equilibrium point of system (1.1) are summarized as
follows:

Lemma 2.1. (i) The trivial equilibrium E0 = (0, 0) is unstable and the boundary equilibrium
E1 = ( r0−d

a , 0) is locally asymptotically stable if r0 > d and (r0 − d)(cp − mq) < am;
(ii) The trivial equilibrium E0 = (0, 0) is unstable and the boundary equilibrium E1 is globally
asymptotically stable if the inequality r0 > d and cp ≤ mq are satisfied.

If (cpr0 − cpd − am)(cp − mq) > aqm2, then the positive equilibrium point E2 = (x2, y2) exists for
system (1.1), in which

x2 =
m

cp − mq
, y2 =

−(p + dk + dkqx2 + akx2 + akqx2
2) +
√
∆2

2pk
,

where

∆2 = (p + dk + dkqx2 + akx2 + akqx2
2)2 + 4pk(r0 + roqx2 − d − dqx2 − ak − aqx2

2).

Lemma 2.2. The positive equilibrium E2 is locally asymptotically stable if

am
cp − mq

< r0 − d ≤
a(cp + mq)
q(cp − mq)

(2.1)

or 
r0 − d >

a(cp + mq)
q(cp − mq)

,

k >
q(cp − mq)2[(r0 − d)q(cp − mq) − a(cp + mq)]

c2 pa[qd(cp − mq) + a(cp + mq)]
.

(2.2)

is satisfied.

Lemma 2.3. The positive equilibrium E2 is globally asymptotically stable if

am
cp − mq

< r0 − d ≤
a(cp + mq)
q(cp − mq)

and
r0q

cp − mq
≥ 1. (2.3)

We summarize the equilibrium points of system (1.1) and their stability in Table 1.

Table 1. Stability of the equilibrium points.

Points r0 > d, cp ≤ mq cp > mq, 0 < r0 − d < am
cp−mq cp > mq, am

cp−mq < r0 − d ≤ a(cp+mq)
q(cp−mq)

E0 = (0, 0) unstable unstable unstable
E1 = ( r0−d

a , 0) stable stable unstable
E2 = (x2, y2) does not exist does not exist stable

AIMS Mathematics Volume 9, Issue 9, 24271–24296.



24275

2.1. Impulsive set

In order to derive the analytical form of the Poincaré map and investigate the dynamics of model
(1.2), we first focus on the precise domains of the impulsive set and phase set of model (1.2).

As shown in Figure 1, we define two straight lines related to economic thresholds: L1 : x = ET ,
L2 : x = (1 − H)ET , where H = δET

ET+β
. The two isoclines of system (1.2) are denoted by L3 and L4, in

which

L3 : y =
−(p + dk + dkqx + akx + akqx2) +

√
∆

2pk
L4 : x =

m
cp − mq

where

∆ = (p + dk + dkqx + akx + akqx2)2 + 4pk(r0 + roqx − d − dqx − ak − aqx2)

Next, we will discuss the impulsive set and phase set of system (1.2) if the positive equilibrium
point E2 = (x2, y2) is globally asymptotically stable for system (1.1).

Denote the point E3 = (xE3 , yE3) as the intersection point of the trajectory τ1 with the line L3. If line
L2 intersects τ1, the intersections of τ1 with L2 are B1 = (xB1 , yB1) and B2 = (xB2 , yB2), and τ1 is tangent
to the line L1 at point T = (xT , yT ). If the trajectory τ2 is tangent to the line L2, then denote the tangent
point as C0 = (xC0 , yC0) and point C1 = (xC1 , yC1) as the intersection of the trajectory τ2 with the line
L1, as shown in Figure 1(A).

It is easy to see that in Figure 1(A), if ET > x2, the line L1 is to the right of the point E2. In Figure
1(B), if ET < x2, the line L1 is to the left of the point E2. In order to facilitate the discussion of the
impulsive set and phase set of system (1.2) in different cases, we divide the relationship between ET

and x2 into the following two cases:

A1 : ET > x2, A2 : ET ≤ x2,

and consider the relationship between (1 − H)ET and xE3 into the following two cases:

(1) : (1 − H)ET ≥ xE3 , (2) : (1 − H)ET < xE3 .

For system (1.2), define two impulsive sets as follows:

I = {(x, y) ∈ R2
+ | x = ET , 0 ≤ y ≤ yT }. (2.4)

and

I0 = {(x, y) ∈ R2
+ | x = ET , 0 ≤ y ≤ yc1}. (2.5)
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Figure 1. The definitions of impulsive sets and phase sets are related to the positional
relationship between two straight lines L1 and L2 for case A1 and case A2.

As shown in Figure 1(A), if (1 − H)ET > xE3 , τ1 is tangent to L1 at point T , arbitrary trajectory
starting from point G = ((1 − H)ET , yG), yG ∈ (yB2 , yB1) will not eventually reach the line L1, then we
have the following results:

Lemma 2.4. For case A1(1), any solution starting from the point (x+0 , y
+
0 ) ∈ L2 with y+0 ∈ (yB2 , yB1) does

not experience pulse effects.

Based on the above definition, we define the impulsive sets in different cases.

Lemma 2.5. For case A1(1), the impulsive set is I, and the impulsive set is I0 for case A1(2). For case
A2, the impulsive set is I0.

Proof. According to Lemma 2.4, for case A1(1), any solution of system (1.2) initiating from the set
{(x, y) | x = (1 − H)ET , y ∈ (yB2 , yB1)} will not reach the line L1 and will be free from the pulse effect,
which also implies that the impulsive set is I. For case A1(2), it is easy to see that any solution of
system (1.2) starting from the line L2 can only be below point T upon reaching line L1, which indicates
that the impulsive set is I0. Applying the same method of analysis to case A2 also yields that the
impulsive set is I0 (as shown in Figure 1(B)). This completes the proof.

□
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2.2. Phase set

According to the proof of Lemma 2.4, define the following set for case A1(1):

D0 = [0, yB2] ∪ [yB1 ,+∞). (2.6)

Moreover, the study of the properties of impulsive function y(t+) = y(t) +
τ

1 + θy(t)
is the key to

determinating the phase set, so the impulsive function can be described as

f (z) = z +
τ

1 + θz
, z ∈ [0, yT ]. (2.7)

Taking the derivative of function f (z): f
′

(z) = 1−
τθ

(1 + θz)2 and f
′

(z) = 0 at z =

√
τθ − 1
θ

. By the way,

we denote the useful point: V = (xV , yV) = (ET ,
√
τθ−1
θ

), and the point V is located in the impulsive set.
It will map to impulsive point V+ = (xV+ , yV+) = ((1 − H)ET ,

2
√
τθ−1
θ

) after one impulsive effect.
Then, we will discuss the monotonicity of the function f (z) and consider the exact phase set of the

different cases.
For case A1(1), we have known that the impulsive set in this case is I = {(x, y) ∈ R2

+ | x = ET , 0 ≤
y ≤ yT }, then according to the monotonicity of f (z), the phase set will be discussed under different
conditions:

(I)
√
τθ−1
θ
≤ 0. We can get that f

′

(z) ≥ 0 for all z ∈ [0, yT ], which implies that the function f (z) is
monotonically increasing. We denote

D0
1 = [τ, yT +

τ

1 + θyT
], D1 = D0 ∩ D0

1.

Then, the phase set under the condition A1(1) (I) is

X1 = {(x+, y+) ∈ R2
+ | x

+ = (1 − H)ET , y+ ∈ D1}

(II)
√
τθ−1
θ
≥ yT . Derivative function f

′

(z) ≤ 0 for z ∈ [0, yT ], thus f (z) is monotonically decreasing
and yT +

τ
1+θyT

≤ f (z) ≤ τ. We denote

D0
2 = [yT +

τ

1 + θyT
, τ], D2 = D0 ∩ D0

2.

Then, the phase set under the condition A1(1) (II) is

X2 = {(x+, y+) ∈ R2
+ | x

+ = (1 − H)ET , y+ ∈ D2}

(III) 0 <
√
τθ−1
θ
≤ yT . If 0 < z ≤

√
τθ−1
θ

, then f
′

(z) ≤ 0 and the function f (z) is monotonically
decreasing. Thus, 2

√
τθ−1
θ
≤ f (z) < τ and we denote

D0
3 = [

2
√
τθ − 1
θ

, τ), D3 = D0 ∩ D0
3.
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If
√
τθ−1
θ
< z ≤ yT , f

′

(z) > 0, and the function f (z) is monotonically increasing. Thus, 2
√
τθ−1
θ
<

f (z) ≤ yT +
τ

1+θyT
and we denote

D0
4 = (

2
√
τθ − 1
θ

, yT +
τ

1 + θyT
], D4 = D0 ∩ D0

4.

Now, under the conditions of case A1(1) (III), the impulsive set is I = I1 ∪ I2, where

I1 = {(x, y) ∈ R2
+ | x = ET , 0 < y ≤

√
τθ − 1
θ

}

and

I2 = {(x, y) ∈ R2
+ | x = ET ,

√
τθ − 1
θ

< y ≤ yT }.

The corresponding phase set of impulsive set I = I1 ∪ I2 is X3 ∪ X4, where

X3 = {(x+, y+) ∈ R2
+ | x

+ = (1 − H)ET , y+ ∈ D3}

and
X4 = {(x+, y+) ∈ R2

+ | x
+ = (1 − H)ET , y+ ∈ D4}.

For case A1(2), it can be seen that the impulsive set is I0, then based on the monotonicity of the
function f (z), the phase set will be discussed as follows:

(I)
√
τθ−1
θ
≤ 0. We know that f

′

(z) ≥ 0 for all z ∈ [0, yC1], which implies that the function f (z) is
monotonically increasing, i.e., τ ≤ f (z) ≤ yC1 +

τ
1+θyC1

, so the phase set can be defined as:

X5 = {(x+, y+) ∈ R2
+ | x

+ = (1 − H)ET , y+ ∈ D5}

where
D5 = [τ, yC1 +

τ

1 + θyC1

].

(II)
√
τθ−1
θ
≥ yC1 . We know that f

′

(z) ≤ 0 for z ∈ [0, yC1], thus the function f (z) is monotonically
decreasing and yC1 +

τ
1+θyC1

≤ f (z) ≤ τ. The phase set is defined as

X6 = {(x+, y+) ∈ R2
+ | x

+ = (1 − H)ET , y+ ∈ D6}

where
D6 = [yC1 +

τ

1 + θyC1

, τ].

(III) 0 <
√
τθ−1
θ
≤ yC1 . If 0 < z ≤

√
τθ−1
θ

, then f
′

(z) ≤ 0 and the function f (z) is monotonically
decreasing. We denote:

D7 = [
2
√
τθ − 1
θ

, τ).

If
√
τθ−1
θ
< z ≤ yC1 , then f

′

(z) > 0 and the function f (z) is monotonically increasing, then

D8 = (
2
√
τθ − 1
θ

, yC1 +
τ

1 + θyC1

].
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Under the condition A1(2) (III), the impulsive set is I0 = I1 ∪ I3, where

I3 = {(x, y) ∈ R2
+ | x = ET ,

√
τθ − 1
θ

< y ≤ yC1}.

The corresponding phase set of impulsive set I0 = I1 ∪ I3 is X7 ∪ X8, where

X7 = {(x+, y+) ∈ R2
+ | x

+ = (1 − H)ET , y+ ∈ D7}

and
X8 = {(x+, y+) ∈ R2

+ | x
+ = (1 − H)ET , y+ ∈ D8}.

For case A2, the phase sets can be analyzed in a similar way as described in case A1(2), then we
have:

(I)
√
τθ−1
θ
≤ 0. The phase set is X5.

(II)
√
τθ−1
θ
≥ yC1 . The phase set is X6.

(III) 0 <
√
τθ−1
θ
≤ yC1 . The phase set is X7 ∪ X8.

For the sake of convenience, and to explore the complexity of the system (1.2) under varying
parameters more clearly such as ET , τ, δ, etc., we summarized the impulsive sets and phase sets for
different cases as follows in Table 2:

Table 2. Impulsive sets and phase sets in different cases.

Cases Impulsive set Phase set

A1(1)
(I) I X1

(II) I X2

(III) I = I1 ∪ I2 X3 ∪ X4

A1(2)
(I) I0 X5

(II) I0 X6

(III) I0 = I1 ∪ I3 X7 ∪ X8

A2

(I) I0 X5

(II) I0 X6

(III) I0 = I1 ∪ I3 X7 ∪ X8

2.3. Poincaré map

Consider the Poincaré map in case A1(2). First, the defining two sections are as follows:

S ET = {(x, y) | x = ET , y ≥ 0}, S δET = {(x, y) | x = (1 − H)ET , y ≥ 0}.

Point Q+k = ((1 − H)ET , yQ+k
) is located on the line L2, and the trajectory of system (1.2) passing

through Q+k will reach S ET , i.e., the trajectory initiating from Q+k will arrive at line L1, and the
intersection of the trajectory with line L1 is Qk+1 = (ET , yQk+1) ∈ S ET . After one time impulsive
effect, Qk+1 will map to Q+k+1 = ((1 − H)ET , y+Qk+1

) with y+Qk+1
= yQk+1 +

τ
1+θyQk+1

on S δET . Thus, we can
define P(y+Qk

) = yQk+1 and the Poincaré map PM as

y+Qk+1
= yQk+1 +

τ

1 + θyQk+1

= P(y+Qk
) +

τ

1 + θP(y+Qk
)
= PM(y+Qk

). (2.8)
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Further, noting that

P(x, y) =
r0x

1 + ky
− dx − ax2 −

pxy
1 + qx

, Q(x, y) =
cpxy

1 + qx
− my,

then 
dy
dx
=

Q(x, y)
P(x, y)

=

cpxy
1 + qx

− my

r0x
1 + ky

− dx − ax2 −
pxy

1 + qx

= g(x, y),

y((1 − H)ET ) = y+0 ,

(2.9)

For model (2.9), we only focus on the region

Ω = {(x, y) | x > 0, y > 0, y <
−(p + dk + dkqx + akx + akqx2) +

√
∆

2pk
}. (2.10)

where
∆ = (p + dk + dkqx + akx + akqx2)2 + 4pk(r0 + roqx − d − dqx − ak − aqx2).

Noting the point C0 = ((1 − H)ET , yC0) ∈ S δET with

yC0 =
−(p + dk + dkq(1 − H)ET + ak(1 − H)ET + akq(1 − H)2E2

T ) +
√
∆1

2pk

where

∆1 = (p + dk + dkqxt + akxt + akqx2
t )2 + 4pk(r0 + roqxt − d − dqxt − ak − aqx2

t ), xt = (1 − H)ET .

The initial value of model (2.9) is x+0 = (1 − H)ET , y+0 = S with S < yC0(i.e., (x+0 , y
+
0 ) ∈ Ω), then we

have
y(x, S ) = S +

∫ x

(1−H)ET

g(s, y(s, S ))ds. (2.11)

Thus, the Poincaré map PM in the region Ω is

PM(S ) = y(ET , S ) +
τ

1 + θy(ET , S )
. (2.12)

3. Existence and stability of the boundary order-1 periodic solution for τ = 0

If τ = 0, then we consider the following subsystem:
dx
dt
= r0x − dx − ax2, x < ET ,

x(t+) =
(
1 −

δx(t)
x(t) + β

)
x(t), x = ET .

(3.1)

The initial condition for system (3.1) is x(0+) = (1−H)ET , and solving the first equation of the system
(3.1):

xT (t) =
Fe(r0−d)t(r0 − d)
a(1 + Fe(r0−d)t)

(3.2)
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where
F =

a(1 − H)ET

r0 − d − a(1 − H)ET

If the trajectory xT (t) reaches L1, letting ET =
Fe(r0−d)T (r0−d)
a(1+Fe(r0−d)T )

, we have

T =
ln( aET

F(r0−d−aET ) )

r0 − d
.

Therefore, there exists a boundary order-1 periodic solution (xT (t), 0) = ( Fe(r0−d)t(r0−d)
a(1+Fe(r0−d)t)

, 0) for system
(1.2), and we have the following conclusions about the stability of (xT (t), 0).

Theorem 3.1. The boundary order-1 periodic solution (xT (t), 0) is orbitally asymptotically stable if,
and only if,

0 < δ <
(ET + β)(r0 − d − aET )

aE2
T exp(A′)

−
(ET + β)(r0 − d)

aE2
T

+ 1 +
β

ET
, (3.3)

where

A
′

= (r0 − d − m)T + 2 ln(
1 + F

1 + F(e(r0−d)T )
) +

cp
q(r0 − d) + a

ln(
[q(r0 − d) + a]Fe(r0−d)T + a

[q(r0 − d) + a]F + a
).

Proof. Denoting

P(x, y) =
r0x

1 + ky
− dx − ax2 −

pxy
1 + qx

, Q(x, y) =
cpxy

1 + qx
− my,

α(x, y) = −
δx2(t)

x(t) + β
, φ(x, y) =

τ

1 + θy(t)
, ϕ(x, y) = x − ET .

By calculating:

∂P
∂x
=

r0

1 + ky
− d − 2ax −

py(1 + qx) − pqxy
(1 + qx)2 ,

∂Q
∂y
=

cpx
1 + qx

− m,

∂α

∂x
= −
δx2 + 2δβx

(x + β)2 ,
∂φ

∂y
= −

τθ

(1 + θy)2 ,
∂ϕ

∂x
= 1,

∂α

∂y
=
∂φ

∂x
=
∂ϕ

∂y
= 0, (xT (T ), yT (T )) = (ET , 0), (xT (T+), yT (T+)) = ((1 − H)ET , 0).

then

∆1 =
P+(

∂φ

∂y
∂ϕ

∂x −
∂φ

∂x
∂ϕ

∂y +
∂ϕ

∂x ) + Q+(∂α∂x
∂ϕ

∂y −
∂α
∂y
∂ϕ

∂x +
∂ϕ

∂y )

P∂ϕ
∂x + Q∂ϕ

∂y

=
(1 − H)(1 − τθ)[r0 − d − a(1 − H)ET ]

r0 − d − aET

=
(1 − H)[r0 − d − a(1 − H)ET ]

r0 − d − aET

<
r0 − d − a(1 − H)ET

r0 − d − aET
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From the previous analysis on the existence of boundary order-1 periodic solution, we know that:
∆1 > 0.

exp(
∫ T

0
[
∂P
∂x

(xT (t), yT (t)) +
∂Q
∂y

(xT (t), yT (t))]dt)

=exp(
∫ T

0
[r0 − d − 2a(

Fe(r0−d)t(r0 − d)
a(1 + Fe(r0−d)t)

) +
cp( Fe(r0−d)t(r0−d)

a(1+Fe(r0−d)t)
)

1 + q( Fe(r0−d)t(r0−d)
a(1+Fe(r0−d)t)

)
− m]dt)

=exp(
∫ T

0
[I1 + I2 + I3]dt)

where

I1 = r0 − d − m, I2 = −
2(r0 − d)Fe(r0−d)t

1 + Fe(r0−d)t ,

I3 =
[cp(r0 − d)Fe(r0−d)t][a(1 + Fe(r0−d)t)]

[a(1 + Fe(r0−d)t)][q(r0 − d)Fe(r0−d)t + a(1 + Fe(r0−d)t)]

=
cp(r0 − d)Fe(r0−d)t

Fe(r0−d)t[q(r0 − d) + a] + a
.

exp(
∫ T

0
I1dt) = exp((r0 − d − m)T ),

exp(
∫ T

0
I2dt) = exp(−2 ln(1 + Fe(r0−d)t)

∣∣∣∣∣T
0
) = exp(2 ln(

1 + F
1 + F(e(r0−d)T )

)),

exp(
∫ T

0
I3dt) = exp(

∫ T

0

cp(r0 − d)Fe(r0−d)t

Fe(r0−d)t[q(r0 − d) + a] + a
dt)

= exp(
cp

q(r0 − d) + a
ln(Fe(r0−d)t[q(r0 − d) + a] + a)

∣∣∣∣∣T
0
)

= exp(
cp

q(r0 − d) + a
ln(

[q(r0 − d) + a]Fe(r0−d)T + a
[q(r0 − d) + a]F + a

)).

Therefore, we have:

exp(
∫ T

0
[I1 + I2 + I3]dt) = exp(A

′

)

where

A
′

= (r0 − d − m)T + 2 ln(
1 + F

1 + F(e(r0−d)T )
) +

cp
q(r0 − d) + a

ln(
[q(r0 − d) + a]Fe(r0−d)T + a

[q(r0 − d) + a]F + a
).

Then, the Floquet multiplier µ2 can be obtained:

µ2 = ∆1exp(
∫ T

0
[
∂P
∂x

(xT (t), yT (t)) +
∂Q
∂y

(xT (t), yT (t))]dt)

=
(1 − H)[r0 − d − a(1 − H)ET ]

r0 − d − aET
exp(A

′

)

<
r0 − d − a(1 − H)ET

r0 − d − aET
exp(A

′

)
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Thus, it follows from (3.3) that |µ2| < 1, and the boundary order-1 periodic solution (xT (t), 0) is
orbitally asymptotically stable. This completes the proof. □

4. Existence and stability of the order-1 periodic solution for τ > 0

Previously, the impulsive sets and phase sets under different conditions are plotted in Table 2 and
the boundary order-1 periodic solution for τ = 0 has been discussed. Then, if τ > 0, we will consider
the existence and stability of the periodic solution for system (1.2).

Theorem 4.1. For case A1(1)(I) (or case A1(1)(II)), if yT+ ≥ yB1 , there exists at least one fixed point of
the Poincaré map PM(y+i ), i.e., there exists at least one order-1 periodic solution for the system (1.2);
if yT+ < yB1 , PM(y+i ) does not have any fixed point.

Proof. For case A1(1), as shown in Figure 1, there exists a curve τ1 intersecting the line L2 at two points
B1 and B2 and τ1 is tangent to the line L1 at point T . If yT+ = yB1 , then the curve B̂1T constitutes the
order-1 periodic solution for system (1.2).

For case A1(1)(I), if yT+ > yB1 , i.e., the point T+ is above the point B1, we know that

PM(yB1) > yB1 . (4.1)

Moreover, the trajectory from T+ intersects the line L1 at T1 which lies below the point T , i.e., yT1 < yT .
For case A1(1)(I), the impulsive function f (z) is monotonically increasing on the interval [0, yT ], then
f (yT1) < f (yT ), i.e., yT+1

< yT+ . The above results show that for case A1(1)(I), the Poincaré map satisfies

PM(yT+) < yT+ . (4.2)

It follows from (4.1) and (4.2) that there exists a fixed point of the Poincaré map on interval (yB1 , yT+),
i.e., there exists an order-1 periodic solution for system (1.2).

For case A1(1)(I), if yT+ < yB1 , the impulsive point will be located on the phase set with y+i ∈ [τ, yT+].
According to Lemma 2.4, we know that any solution of system (1.2) will undergo a finite number of
impulses and will not eventually reach the line L1. Thus, there is no fixed point for system (1.2).

For case A1(1)(II), if yT+ > yB1 , the inequality (4.1) holds. The highest impulsive point is denoted
as Bτ = ((1 − H)ET , τ) that satisfies the inequality

PM(τ) < τ. (4.3)

It follows from (4.1) and (4.3) that there exists a fixed point of the Poincaré map on the interval (yB1 , τ),
i.e., there exists an order-1 periodic solution for system (1.2).

Similarly, for A1(1)(II), if yT+ < yB1 , any solution of system (1.2) will undergo a finite number of
impulses, and will not eventually reach the line L1, which indicates that there is no fixed point for
system (1.2). This completes the proof.

□

Theorem 4.2. For case A1(1)(III), if yT+ ≥ yB1 , there exists at least one fixed point of the Poincaré map
PM(y+i ), i.e., there exists at least one order-1 periodic solution for the system (1.2); if yT+ < yB1 , then
PM(y+i ) does not have any fixed point.
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Proof. If yT+ = yB1 , the curve B̂1T constitutes an order-1 periodic solution of system (1.2). Otherwise,
we consider the following two cases:

(i)yT+ ≥ τ, (ii)yT+ < τ.

For case (i), if yT+ > yB1 , then PM(yB1) > yB1 . Moreover, if yT+ ≥ τ, any impulsive point is below
the point T+, then we have PM(yT+) < yT+ . It shows that there exists a fixed point of the Poincaré map
PM(y+i ) on the interval (yB1 , yT+).

For case (ii), if yT+ > yB1 , then PM(yB1) > yB1 . If yT+ < τ, Bτ = ((1 − H)ET , τ) is the highest
impulsive point for which the inequality PM(τ) < τ holds. It shows that there exists a fixed point for
the Poincaré map PM(y+i ) on the interval (yB1 , τ).

In summary, if y+T ≥ yB1 , there exists an order-1 periodic solution for system (1.2).
For yT+ < yB1 , any solution of system (1.2) will undergo a finite number of impulses and it does

not eventually reach the line L1, which indicates that there is no fixed point for system (1.2). This
completes the proof.

□

Theorem 4.3. For case A1(2)(I) (or case A1(2)(II)), there exists at least one fixed point of the Poincaré
map PM(y+i ), i.e., there exists at least one order-1 periodic solution for the system (1.2).

Proof. For case A1(2)(I), there exists a curve τ2 tangents to the line L2 at the point C0 and intersects
with the line L1 at point C1. If PM(yC0) = y+C1

= yC0 , then the curve Ĉ0C1 constitutes the order-1 periodic
solution for system (1.2).

If y+C1
> yC0 or y+C1

< yC0 , the trajectory starting from the point C+1 eventually reaches at the line L1

with a point C2 = (ET , yC2) and it is clear that yC2 < yC1 . At the same time, the point C2 undergoes
impulsive action and then arrives at the phase set, where the phase point is C+2 = ((1 − H)ET , yC+2

).
For case A1(2)(I), the impulsive function is monotonically increasing on the interval [0, yC1], and the
Poincaré map PM(yC+1

) satisfies
PM(yC+1

) < yC+1
. (4.4)

In addition, the point Bτ = ((1 − H)ET , τ) is the lowest impulsive point that satisfies

PM(τ) > τ. (4.5)

It follows from (4.4) and (4.5) that there exists a fixed point of the Poincaré map PM(y+i ) on the interval
(τ, yC+1

), i.e., there exists an order-1 periodic solution for the system (1.2).
For case A1(2)(II), the impulsive function is monotonically decreasing on the interval [0, yC1]. If

y+C1
> yC0 or y+C1

< yC0 , the Poincaré map PM(yC+1
) satisfies

PM(yC+1
) > yC+1

. (4.6)

In addition, now Bτ = ((1 − H)ET , τ) is the highest impulsive point, which satisfied inequality (4.3).
It follows from (4.3) and (4.6) that there exists a fixed point of the Poincaré map PM(y+i ) on the

interval (yC+1
, τ), i.e., there exists an order-1 periodic solution for system (1.2). This completes the

proof. □

Theorem 4.4. For case A1(2)(III), there exists at least one fixed point of the Poincaré map PM(y+i ), i.e.,
there exists at least one order-1 periodic solution for the system (1.2).
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Proof. If yC+1
= yC0 , the curve Ĉ0C1 constitutes the order-1 periodic solution for system (1.2).

Otherwise, we consider the following two cases:

(i)yC+1
≥ τ, (ii)yC+1

< τ.

For case (i), if yC+1
> yC0 , then

PM(yC0) > yC0 . (4.7)

By the monotonicity of the impulsive function, the point C+1 is the highest impulsive point that satisfies

PM(yC+1
) < yC+1

. (4.8)

It follows from (4.7) and (4.8) that there exists a fixed point for the Poincaré map PM(y+i ) on the interval
(yC0 , yC+1

), i.e., there exists an order-1 periodic solution for the system (1.2).
For case (i), if yC+1

< yC0 , on one hand,

PM(yC0) < yC0 . (4.9)

On the other hand, the point V+ = ((1 − H)ET ,
2
√
τθ−1
θ

) is the lowest impulsive point, and we have

PM(yV+) ≥ yV+ . (4.10)

It follows from (4.9) and (4.10) that there exists a fixed point for the Poincaré map PM(y+i ) on the
interval (yV+ , yC0), i.e., there exists an order-1 periodic solution for system (1.2).

For case (ii), if yC+1
> yC0 , then

PM(yC0) > yC0 . (4.11)

Moreover, in this case, the point Bτ = ((1 − H)ET , τ) is the highest impulsive point that satisfies
inequality (4.3).

It follows from (4.3) and (4.11) that there exists a fixed point for the Poincaré map PM(y+i ) on the
interval (yC0 , τ), i.e., there exists an order-1 periodic solution for system (1.2).

For case (ii), if yC+1
< yC0 , then

PM(yC0) < yC0 . (4.12)

Furthermore, the point V+ is the lowest impulsive point that satisfies

PM(yV+) ≥ yV+ . (4.13)

It follows from (4.12) and (4.13) that there exists a fixed point for the Poincaré map PM(y+i ) on the
interval [yV+ , yC0], i.e., there exists an order-1 periodic solution for system (1.2). This completes the
proof. □

Theorem 4.5. For case A2(I) (or case A2(II) and case A2(III)), there exists at least one fixed point of
the Poincaré map PM(y+i ), i.e., there exists at least one order-1 periodic solution for the system (1.2).

The proof is similar to Theorem 4.3 and Theorem 4.4.
After discussing the existence of order-1 periodic solutions under different cases, we will address

the stability of the order-1 periodic solutions.
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Theorem 4.6. The order-1 periodic solution (ξ(t), η(t)) is orbitally asymptotically stable if, and only
if,

∣∣∣∣∣∣ (1 −
τθ

(1+θη0+
τθ

1+θη0
)2 )[( r0(1−H)ET

1+k(η0+
τ

1+θη0
) ) − d(1 − H)ET − a[(1 − H)ET ]2 −

p(1−H)ET (η0+
τ

1+θη0
)

1+q(1−H)ET
]

r0ET
1+kη0

− dET − aE2
T −

pET η0
1+qET

exp(
∫ T

0
G(t)dt)

∣∣∣∣∣∣ < 1,

(4.14)
where

G(t) =
r0

1 + kξ(t)
− d − 2aξ(t) −

pη(t)(1 + qξ(t)) − pqξ(t)η(t)
(1 + qξ(t))2 +

cpξ(t)
1 + qξ(t)

− m.

Proof. We discuss the asymptotic stability of order-1 periodic solutions with respect to system (1.2)
under the conditions for Theorem 4.3.

By using the Poincaré criterion, first, assuming the order-1 periodic solutions (ξ(t), η(t)) passes point
C = (ET , η0) and the corresponding impulsive point is C+ = ((1 − H)ET , η0 +

τ

1 + θη0
). The Floquet

multiplier µ2 can be expressed as:

µ2 = ∆1exp(
∫ T

0
[
∂P
∂x

(ξ(t), η(t)) +
∂Q
∂y

(ξ(t), η(t))]dt)

=
P+(

∂φ

∂y
∂ϕ

∂x −
∂φ

∂x
∂ϕ

∂y +
∂ϕ

∂x ) + Q+(∂α∂x
∂ϕ

∂y −
∂α
∂y
∂ϕ

∂x +
∂ϕ

∂y )

P∂ϕ
∂x + Q∂ϕ

∂y

exp(
∫ T

0
G(t)dt)

=

(1 − τθ
(1+θη0+

τθ
1+θη0

)2 )[( r0(1−H)ET
1+k(η0+

τ
1+θη0

) ) − d(1 − H)ET − a[(1 − H)ET ]2 −
p(1−H)ET (η0+

τ
1+θη0

)

1+q(1−H)ET
]

r0ET
1+kη0

− dET − aE2
T −

pET η0
1+qET

exp(
∫ T

0
G(t)dt)

where

G(t) =
r0

1 + kξ(t)
− d − 2aξ(t) −

pη(t)(1 + qξ(t)) − pqξ(t)η(t)
(1 + qξ(t))2 +

cpξ(t)
1 + qξ(t)

− m.

Denote

F(y) = (
r0(1 − H)ET

1 + ky
) − d(1 − H)ET − a[(1 − H)ET ]2 −

p(1 − H)ET y
1 + q(1 − H)ET

,

and it is easy to see that F
′

(y) = −( kr0(1−H)ET
(1+ky)2 +

p(1−H)ET
1+q(1−H)ET

) < 0, so the monotonically decreasing interval
of the function F(y) is (−∞,+∞).

If x = (1 − H)ET , y = yC0 , we know that

F(yC0) = (
r0(1 − H)ET

1 + kyC0

) − d(1 − H)ET − a[(1 − H)ET ]2 −
p(1 − H)ET yC0

1 + q(1 − H)ET
= 0.

If yC+1
= yC0 , i.e., F(yC+1

) = F(yC0) = 0, it means that |µ2| = 0 < 1, and the order-1 periodic solution
is orbitally asymptotically stable.

For case A1(2)(I), if yC+1
> yC0 and point C+ is below point C0, by the monotonicity of the impulsive

function, then 1 − τθ
(1+θη0+

τθ
1+θη0

)2 > 0, exp(
∫ T

0
G(t)dt) > 0, and F(yC+) > 0, and we can know that µ2 > 0.
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If yC+1
> yC0 and point C+ is above point C0, then 1 − τθ

(1+θη0+
τθ

1+θη0
)2 > 0, exp(

∫ T

0
G(t)dt) > 0, and

F(yC+) < 0, and we can know that µ2 < 0.
For case A1(2)(I), if yC+1

< yC0 , by the monotonicity of the impulsive function, the point C+ must be

below the point C0 clearly, then 1 − τθ
(1+θη0+

τθ
1+θη0

)2 > 0, exp(
∫ T

0
G(t)dt) > 0, and F(yC+) > 0, and we can

know that µ2 > 0.
For case A1(2)(II), if yC+1

> yC0 , by the monotonicity of the impulsive function, the point C+ must

be above the point C0 clearly, then 1 − τθ
(1+θη0+

τθ
1+θη0

)2 < 0, exp(
∫ T

0
G(t)dt) > 0, and F(yC+) < 0, and we

can know that µ2 > 0.
For case A1(2)(II), by the monotonicity of the impulsive function, if yC+1

< yC0 and point C+ is above

point C0, then 1 − τθ
(1+θη0+

τθ
1+θη0

)2 < 0, exp(
∫ T

0
G(t)dt) > 0, and F(yC+) < 0. We can know µ2 > 0. If

yC+1
< yC0 and point C+ is below point C0, then 1− τθ

(1+θη0+
τθ

1+θη0
)2 < 0, exp(

∫ T

0
G(t)dt) > 0, and F(yC+) > 0,

and we can know that µ2 < 0.
Therefore, if |µ2| < 1, i.e., the inequality (4.14) holds true, then the order-1 periodic solution

(ξ(t), η(t)) of system (1.2) is orbitally asymptotically stable. Similarly, we can prove that under the
conditions of Theorem 4.4 and Theorem 4.5, the order-1 periodic solutions of system (1.2) are also
orbitally asymptotically stable. This completes the proof.

□

5. Existence of order-k periodic solutions

In this section, we will discuss the existence of order-k (k ≥ 2) periodic solutions in some cases for
the system (1.2).

Theorem 5.1. For case A1(1)(II), if the condition yT+ > yB1 is satisfied (or for case A1(2)(I), if the
condition yC+1

< yC0 is satisfied; if the condition yC+1
> yC0 is satisfied for case A1(2)(III)), then there is

no order-k (k ≥ 2) periodic solution of system (1.2).

Proof. For case A1(1)(II), if yT+ > yB1 , by Theorem 4.1, there exists an order-1 periodic solution on the
interval (yB1 , τ) for system (1.2). Without loss of generality, assume that the order-1 periodic solution
passes through points B+ = ((1 − H)ET , η

+
0 ) and B = (ET , η0). The trajectory starting from the initial

point T+ reaches at the line L1 with the point T1 = (ET , yT1). Since any two trajectories are disjoint, the
point T1 lies below T . Subsequently, after the impulsive action, T1 will map to the line L2 at point T+1 .

If
√
τθ−1
θ
≥ yT , we know that the impulsive function f (zi) = zi +

τ
1+θzi

is monotonically decreasing on
the interval [0, yT ], so the point T+1 lies above the point T+. By analogy, it can be shown that the point
T+i+1 lies above the point T+i (i = 1, 2, · · · , n), which indicating that T+i is monotonically increasing, i.e.,

yB1 < yT+ < yT+1
< yT+2

< · · · < yT+i < · · · < yT+n < · · · < η
+
0 < τ.

In summary, there is no order-k (k ≥ 2) periodic solution for system (1.2). For case A1(2)(I), if
yC+1
< yC0(or for case A1(2)(III), if yC+1

> yC0), a similar method can be used to prove that there is no
order-k (k ≥ 2) periodic solution for system (1.2). This completes the proof. □
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Theorem 5.2. For case A1(2)(I), if yC+1
> yC0 and yC+2

≥ yC0 (or for case A1(2)(II), if yC+1
< yC0 and

yC+2
≤ yC0; for case A1(1)(I), if yT+ > yB1 and yT+1

≥ yB1), then there is no order-k (k ≥ 3) periodic
solution for the system (1.2).

Proof. For case A1(2)(I), if yC+1
> yC0 and yC+2

= yC0 , the two curves Ĉ0C1 and Ĉ+1 C2 form an order-2
periodic solution.

If yC+2
> yC0 , the impulsive points of the solutions which start from the interval [yC+2

, yC+1
] ∈ X5 are

higher than the point C+2 . In fact, any two trajectories are disjoint, it follows that for case A1(2)(I), and
we derive

yC0 < yC+2
< yC+4

< yC+3
< yC+1

= PM(yC0),

where yC+k
is the ordinate of the point lies on the phase set which corresponds to the trajectory

undergoing one pulse from the initial point C+k−1 = ((1 − H)ET , yC+k−1
). Thus, the following relations for

the sequence of impulsive points y+Ci
can be obtained:

yC0 < yC+2
< yC+4

< · · · < yC+2n
< yC+2n+2

< · · · < yC+2n+1
< yC+2n−1

< · · · < yC+3
< yC+1

= PM(yC0). (5.1)

It follows from (5.1) that either there exists a unique y∗ ∈ [y+C2
, y+C1

] such that

lim
n→∞

yC+2n
= lim

n→∞
yC+2n−1

= y∗, (5.2)

or there exist two different values y∗1 , y∗2(y∗1, y
∗
2 ∈ [y+C2

, y+C1
]) such that

lim
n→∞

yC+2n
= y∗1, lim

n→∞
yC+2n−1

= y∗2. (5.3)

Therefore, it follows from (5.2) and (5.3) that there exists either a fixed point or a two-point periodic
cycle for the Poincaré map PM(y+i ). That is, for case A1(2)(I), if yC+1

> yC0 and yC+2
≥ yC0 , there exist an

order-1 periodic solution and order-2 periodic solution for system (1.2), and there is no order-k (k ≥ 3)
periodic solutions.

In a similar way, it can be shown that for case A1(2)(II), if yC+1
< yC0 and yC+2

≤ yC0 (or for case
A1(1)(I), if yT+ > yB1 and yT+1

≥ yB1), there is no order-k (k ≥ 3) periodic solution for system (1.2). This
completes the proof. □

6. Numerical simulation

In this section, we will verify the results obtained in the theoretical part and the influence of the fear
factor on the dynamics of system (1.2) through numerical simulations. Figures 2 and 3 demonstrate the
existence of order-1 and order-2 periodic solutions for system (1.2), respectively. Furthermore, Figures
4, 5, and 6 illustrate higher-order periodic solutions for system (1.2), including an order-3 periodic
solution in Figure 4, an order-4 periodic solution in Figure 5, and an order-5 periodic solution in Figure
6. Figures 2 to 6 illustrate the rich dynamic behaviors of system (1.2). Under certain conditions of the
integrated control strategy, the populations of pests and predators will display periodic oscillations,
maintaining both population densities in a stable state while ensuring that the pest density remains
below the economic threshold. In Figures 2 to 6, despite consistent values for the fear factor k, there is
variation in the order of periodic solutions. This indicates that the fear factor k is not the only condition
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that determines the order of periodic solutions, and it is closely related to other parameters of the
system (1.2).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x(t)

0

0.5

1

1.5

2

2.5

y
(t

)

(a)

50 100 150 200 250 300 350

t

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x
(t

)

(b)

0 50 100 150 200 250 300

t

0

0.5

1

1.5

2

y
(t

)

(c)

Figure 2. The order-1 periodic solution of system (1.2), where r0 = 1, a = 0.08, k = 0.3,
p = 1.2, c = 0.53, d = 0.4, m = 0.3, q = 1, β = 1, τ = 1.8, θ = 2, δ = 0.2, ET = 1.8. (a)
Graph of the relationship between x and y; (b) Times series of x; (c) Times series of y.
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Figure 3. The order-2 periodic solution of system (1.2), where r0 = 2, a = 0.1, k = 0.3,
p = 1.5, c = 0.5, d = 0.03, m = 0.28, q = 1, β = 1, τ = 1.8, θ = 2, δ = 0.2, ET = 1.7. (a)
Graph of the relationship between x and y; (b) Times series of y; (c) Times series of x; (d)
The partial enlargement of (c).
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Figure 4. The order-3 periodic solution of system (1.2), where r0 = 2.2, a = 0.11, k = 0.3,
p = 1.2, c = 0.5, d = 0.03, m = 0.28, q = 1, β = 1, τ = 1.8, θ = 2, δ = 0.2, ET = 1.8. (a)
Graph of the relationship between x and y; (b) Times series of y; (c) Times series of x; (d)
The partial enlargement of (c).
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Figure 5. The order-4 periodic solution of system (1.2), where r0 = 2.3, a = 0.08, k = 0.3,
p = 1.2, c = 0.53, d = 0.03, m = 0.3, q = 1, β = 1, τ = 1.8, θ = 2, δ = 0.2, ET = 2. (a)
Graph of the relationship between x and y; (b) Times series of y; (c) Times series of x; (d)
The partial enlargement of (c).
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Figure 6. The order-5 periodic solution of system (1.2), where r0 = 2.7, a = 0.08, k = 0.3,
p = 1.2, c = 0.53, d = 0.04, m = 0.3, q = 1, β = 1, τ = 1.8, θ = 2, δ = 0.2, ET = 2. (a)
Graph of the relationship between x and y; (b) Times series of y; (c) Times series of x; (d)
The partial enlargement of (c).

The impact of fear factor on population size is addressed in Figure 7, which reveals important
discoveries. Specifically, the graph demonstrates that a decrease in the fear factor leads to an increase in
the frequency of oscillations within prey and predator cycles, and their populations remain at relatively
high levels. Conversely, an increase in the fear factor intensifies the predator’s disruptive influence
on prey dynamics, resulting in amplified amplitude of prey cycle oscillations and prolonged decline
periods for their populations. These findings align with previous studies and further confirm that
predators exert coercive effects on prey by inducing stress responses that impede development and
reproduction rates, ultimately leading to population declines. This further implies that the fear effect
cannot be ignored in terms of its impact on the population density of pests and predators.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x(t)

0.5

1

1.5

2

2.5

3

y
(t

)

k=0.7

k=1.5

k=3

k=2.2

(a)

10 20 30 40 50 60 70 80 90 100

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
(t

)

k=1.5
k=2.2

k=3

k=0.7

(b)

0 10 20 30 40 50 60 70 80 90 100

t

0

0.5

1

1.5

2

2.5

3

y
(t

)

k=0.7

k=1.5

k=2.2 k=3

(c)

Figure 7. The influence of the fear factor on population size, where r0 = 1, a = 0.01,
d = 0.04, p = 0.5, q = 1, c = 0.6, m = 0.2, ET = 0.9, δ = 0.2, β = 1, τ = 1.8, θ = 2. Here the
fear factors are k = 0.7, k = 1.5, k = 2.2 and k = 3.

AIMS Mathematics Volume 9, Issue 9, 24271–24296.



24292

7. Conclusions

The IPM approach combines biological and chemical technologies to offer an economical and
efficient ecological solution for controlling plant diseases and insect pests. Moreover, it serves as
a foundation for establishing state-dependent impulsive prey-predator models [37–39]. Recently,
ecologists and biologists have discovered that the interactions between prey and predators should not
be solely described by direct predation, and the fear effect may also play a significant role in predator-
prey interactions. When prey becomes aware of the presence of predators, their growth, development,
and reproduction are significantly affected. Considering these factors, we propose a nonlinear state-
dependent feedback control predator-prey model (1.2) with fear effect, and the aim of this paper is to
reveal the dynamical behavior and biological implications of the model.

We used the qualitative theory for impulsive semi-dynamical system to study the impulsive sets and
phase sets of system (1.2) under different external conditions if the equilibrium point E2 is stable, and
defined the Poincaré map for impulsive point series in the phase set. The existence and the stability
of periodic solutions were discussed by using the principle of successor functions and the Poincaré
criteria. Subsequently, numerical simulations were conducted utilizing MATLAB software. The
results indicate that the population dynamics of the predator-prey system are influenced by multiple
factors, including the initial density of pests and predators, intraspecifics competition, the numbers
of released predators, the mortality rate of insecticides, and the fear caused by predators. The global
asymptotic stability of periodic solution means that under appropriate control strategies, pests and
natural enemies can coexist, the populations reach dynamic equilibrium, and the pest density remains
below the economic threshold. In addition, based on previous researches, our study introduces the fear
effect as an important biological evolutionary force into the predator-prey model, making the model
more practical. Figure 7 shows the impact of different levels of species’ fear responses on population
size, depicting the changes in the amplitude and frequency of predator-prey population oscillations
corresponding to changes in fear levels, demonstrating the undeniable influence of fear effects on
biological population interactions.

The model developed in this paper incorporates the natural enemy density regulation factor θ and
the fear factor k of prey to predator. The introduction of θ is motivated by the rapid development
and application of pest monitoring and early warning technology, as well as information agriculture
technology which enhances resource efficiency. The inclusion of the fear factor k objectively reflects a
new understanding of human influence on species evolution, leaving ample room for studying the fear
effect in species interactions. In fact, some real prey-predator interactions are often neglected when
constructing models, such as the anti-predation behavior of adult prey against young predators, the
hiding of predators, the aggregation of prey, or the reduction of prey activity, etc. It has been shown
in many previous papers that the existence of refuges may have a significant impact on the coexistence
of prey and predators [40–42]. Therefore, in the future, we will consider incorporating these factors
into mathematical models and conducting the dynamics analysis of them, which will be helpful for
designing IPM strategies and making management decisions.
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