Research article Special Issues

Robust dynamic control algorithm for uncertain powered wheelchairs based on sliding neural network approach

  • Received: 23 July 2023 Revised: 31 August 2023 Accepted: 11 September 2023 Published: 20 September 2023
  • MSC : 68T07, 92B20

  • The dynamic model of mobile wheelchair technology requires developing and implementing an intelligent control system to improve protection, increasing performance efficiency, and creating precise maneuvering in indoor and outdoor spaces. This work aims to design a robust tracking control algorithm based on a reference model for operating the kinematic model of powered wheelchairs under the variation of system parameters and unknown disturbance signals. The control algorithm was implemented using the pole placement method in combination with the sliding mode control (PP-SMC) approach. The design also adopted a neural network approach to eliminate system uncertainties from perturbations. The designed method utilized the sinewave signal as an essential input signal to the reference model. The stability of a closed-loop control system was achieved by adopting the Goa reaching law. The performance of the proposed tracking control system was evaluated in three scenarios under different conditions. These included assessing the tracking under normal operation conditions, considering the tracking performance by changing the dynamic system's parameters and evaluating the control system in the presence of uncertainties and external disturbances. The findings demonstrated that the proposed control method efficiently tracked the reference signal within a small error based on mean absolute error (MAE) measurements, where the range of MAE was between 0.08 and 0.12 in the presence of uncertainties or perturbations.

    Citation: Mohsen Bakouri, Abdullah Alqarni, Sultan Alanazi, Ahmad Alassaf, Ibrahim AlMohimeed, Mohamed Abdelkader Aboamer, Tareq Alqahtani. Robust dynamic control algorithm for uncertain powered wheelchairs based on sliding neural network approach[J]. AIMS Mathematics, 2023, 8(11): 26821-26839. doi: 10.3934/math.20231373

    Related Papers:

  • The dynamic model of mobile wheelchair technology requires developing and implementing an intelligent control system to improve protection, increasing performance efficiency, and creating precise maneuvering in indoor and outdoor spaces. This work aims to design a robust tracking control algorithm based on a reference model for operating the kinematic model of powered wheelchairs under the variation of system parameters and unknown disturbance signals. The control algorithm was implemented using the pole placement method in combination with the sliding mode control (PP-SMC) approach. The design also adopted a neural network approach to eliminate system uncertainties from perturbations. The designed method utilized the sinewave signal as an essential input signal to the reference model. The stability of a closed-loop control system was achieved by adopting the Goa reaching law. The performance of the proposed tracking control system was evaluated in three scenarios under different conditions. These included assessing the tracking under normal operation conditions, considering the tracking performance by changing the dynamic system's parameters and evaluating the control system in the presence of uncertainties and external disturbances. The findings demonstrated that the proposed control method efficiently tracked the reference signal within a small error based on mean absolute error (MAE) measurements, where the range of MAE was between 0.08 and 0.12 in the presence of uncertainties or perturbations.



    加载中


    [1] A. Kaur, Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review, J. Med. Eng. Technol., 45 (2021), 61–74. https://doi.org/10.1080/03091902.2020.1853838 doi: 10.1080/03091902.2020.1853838
    [2] M. Callejas-Cuervo, A. X. González-Cely, T. Bastos-Filho, Control systems and electronic instrumentation applied to autonomy in wheelchair mobility: the state of the art, Sensors, 20 (2020), 6326. https://doi.org/10.3390/s20216326 doi: 10.3390/s20216326
    [3] M. Bakouri, M. Alsehaimi, H. F. Ismail, K. Alshareef, A. Ganoun, A. Alqahtani, et al., Steering a robotic wheelchair based on voice recognition system using convolutional neural networks, Electronics, 11 (2022), 168. https://doi.org/10.3390/electronics11010168 doi: 10.3390/electronics11010168
    [4] M. Bakouri, Development of voice control algorithm for robotic wheelchair using NIN and LSTM models, Comput. Mater. Continua, 1 (2022), 2441–2456. https://doi.org/10.32604/cmc.2022.025106 doi: 10.32604/cmc.2022.025106
    [5] H. Y. Ryu, J. S. Kwon, J. H. Lim, A. H. Kim, S. J. Baek, J. W. Kim, Development of an autonomous driving smart wheelchair for the physically weak, Appl. Sci., 12 (2021), 377. https://doi.org/10.3390/app12010377 doi: 10.3390/app12010377
    [6] P. S. Yadav, V. Agrawal, J. C. Mohanta, M. D. F. Ahmed, A robust sliding mode control of mecanum wheel-chair for trajectory tracking, Mater. Today, 56 (2022), 623–630. https://doi.org/10.1016/j.matpr.2021.12.398 doi: 10.1016/j.matpr.2021.12.398
    [7] L. Teng, M. A. Gull, S. Bai, PD-based fuzzy sliding mode control of a wheelchair exoskeleton robot, IEEE/ASME Trans. Mechatron., 25 (2020), 2546–2555. https://doi.org/10.1109/TMECH.2020.2983520 doi: 10.1109/TMECH.2020.2983520
    [8] A. A. Aly, M. T. Vu, F. F. El-Sousy, K. H. Hsia, A. Alotaibi, G. Mousa, et al., Adaptive neural network-based fixed-time tracking controller for disabilities exoskeleton wheelchair robotic system, Mathematics, 10 (2022), 3853. https://doi.org/10.3390/math10203853 doi: 10.3390/math10203853
    [9] G. Feng, T. M. Guerra, L. Busoniu, A. T. Nguyen, S. Mohammad, Robust observer-based tracking control under actuator constraints for power-assisted wheelchairs, Control Eng. Pract., 109 (2021), 104716. https://doi.org/10.1016/j.conengprac.2020.104716 doi: 10.1016/j.conengprac.2020.104716
    [10] F. Cao, X. Wang, J. Shi, Robust H-infinity control of intelligent autonomous navigation wheelchair, 2013 IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks, 2013. https://doi.org/10.1109/MSN.2013.106 doi: 10.1109/MSN.2013.106
    [11] M. Mohammed, B. Abdelmadjid, B. Djamila, A fuzzy logic controller for electric powered wheelchair based on lagrange model, 2019 International Conference on Advanced Electrical Engineering, 2019. https://doi.org/10.1109/ICAEE47123.2019.9014838 doi: 10.1109/ICAEE47123.2019.9014838
    [12] A. A. Jorge, L. A. M. Riascos, P. E. Miyagi, Modelling and control strategies for a motorized wheelchair with hybrid locomotion systems, J. Braz. Soc. Mech. Sci. Eng., 43 (2021), 46. https://doi.org/10.1007/s40430-020-02730-7 doi: 10.1007/s40430-020-02730-7
    [13] D. Sanders, G. Tewkesbury, M. Haddad, P. Kyberd, S. Zhou, M. Langner, Control of a semi-autonomous powered wheelchair, J. Phys., 2224 (2022), 012098. https://doi.org/10.1088/1742-6596/2224/1/012098 doi: 10.1088/1742-6596/2224/1/012098
    [14] H. Wang, B. Salatin, G. G. Grindle, D. Ding, R. A. Cooper, Real-time model based electrical powered wheelchair control. Med. Eng. Phys., 31 (2009), 1244–1254. https://doi.org/10.1016/j.medengphy.2009.08.002 doi: 10.1016/j.medengphy.2009.08.002
    [15] H. Seki, N. Tanohata, Fuzzy control for electric power-assisted wheelchair driving on disturbance roads, IEEE Trans. Syst. Man Cybern., 42 (2012), 1624–1632. https://doi.org/10.1109/TSMCC.2012.2212008 doi: 10.1109/TSMCC.2012.2212008
    [16] V. Sankardoss, P. Geethanjali, Design and low-cost implementation of an electric wheelchair control, IETE J. Res., 67 (2021), 657–666. https://doi.org/10.1080/03772063.2019.1565951 doi: 10.1080/03772063.2019.1565951
    [17] A. A. Aly, K. H. Hsia, F. F. M. El-Sousy, S. Mobayen, A. Alotaibi, G. Mousa, et al., Adaptive neural backstepping control approach for tracker design of wheelchair upper-limb exoskeleton robot system, Mathematics., 10 (2022), 4198. https://doi.org/10.3390/math10224198 doi: 10.3390/math10224198
    [18] F. N. Martins, W. C. Celeste, R. Carelli, M. Sarcinelli-Filho, T. F. Bastos-Filho, An adaptive dynamic controller for autonomous mobile robot trajectory tracking, Control Eng. Pract., 16 (2008), 1354–1363. https://doi.org/10.1016/j.conengprac.2008.03.004 doi: 10.1016/j.conengprac.2008.03.004
    [19] Z. Zhang, M. Leibold, D. Wollherr. Integral sliding-mode observer-based disturbance estimation for euler-lagrangian systems, IEEE Trans. Control Syst. Technol., 28 (2019), 2377–2389. https://doi.org/10.1109/TCST.2019.2945904 doi: 10.1109/TCST.2019.2945904
    [20] J. H. Wilkinson, F. L. Bauer, C. Reinsch, Linear algebra, Springer, 2013.
    [21] W. Gao, Y. Wang, A. Homaifa, Discrete-time variable structure control systems, IEEE Trans. Ind. Electron., 42 (1995), 117–122. https://doi.org/10.1109/41.370376 doi: 10.1109/41.370376
    [22] S. Mobayen, K. A. Alattas, A. Fekih, F. F. El-Sousy, M. Bakouri, Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: a linear matrix inequality approach, Chaos Solitons Fract., 157 (2022), 111918. https://doi.org/10.1016/j.chaos.2022.111918 doi: 10.1016/j.chaos.2022.111918
    [23] J. Wang, P. Zhu, B. He, G. Deng, C. Zhang, X. Huang, An adaptive neural sliding mode control with ESO for uncertain nonlinear systems, Int. J. Control Autom. Syst., 19 (2021), 687–697. https://doi.org/10.1007/s12555-019-0972-x doi: 10.1007/s12555-019-0972-x
    [24] M. Ajay, P. Srinivas, L. Netam, AI and IoT-based intelligent automation in robotics, Wiley Online Library, 2021. https://doi.org/10.1002/9781119711230.ch16
    [25] C. R. Teeneti, U. Pratik, G. R. Philips, A. Azad, M. Greig, R. Zane, et al., System-level approach to designing a smart wireless charging system for power wheelchairs, IEEE Trans. Ind. Appl., 57 (2021), 5128–5144. https://doi.org/10.1109/TIA.2021.3093843 doi: 10.1109/TIA.2021.3093843
    [26] K. Bai, H. Yan, K. M. Lee, Robust control of a spherical motor in moving frame, Mechatronics, 75 (2021), 102548. https://doi.org/10.1016/j.mechatronics.2021.102548 doi: 10.1016/j.mechatronics.2021.102548
    [27] S. Zhang, W. Wang, Z. Xu, D. Shang, M. Yin, Adaptive sliding mode robust control of manipulator driven by tendon-sheath based on HJI theory, Meas. Control, 55 (2022), 684–702. https://doi.org/10.1177/00202940211067176 doi: 10.1177/00202940211067176
    [28] C. S. Teodorescu, B. Zhang, T. Carlson, A stochastic control strategy for safely driving a powered wheelchair, IFAC-PapersOnLine, 53 (2020), 10148–10153. https://doi.org/10.1016/j.ifacol.2020.12.2741 doi: 10.1016/j.ifacol.2020.12.2741
    [29] T. N. Nguyen, S. W. Su, H. T. Nguyen, Robust neuro-sliding mode multivariable control strategy for powered wheelchairs, IEEE Trans. Neural Syst. Rehabil. Eng., 19 (2010), 105–111. https://doi.org/10.1109/TNSRE.2010.2069104 doi: 10.1109/TNSRE.2010.2069104
    [30] S. Zhang, F. Cao, C. Li, Y. Ming, Robust H∞ fuzzy logic control of intelligent electrically powered wheelchair, 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, 2019. https://doi.org/10.1109/IAEAC47372.2019.8997953
    [31] A. Al-Mahturi, F. Santoso, M. A. Garratt, S. G. Anavatti, A novel evolving type-2 fuzzy system for controlling a mobile robot under large uncertainties, Robotics, 12 (2023), 40. https://doi.org/10.3390/robotics12020040 doi: 10.3390/robotics12020040
    [32] C. De La Cruz, T. F. Bastos, R. Carelli, Adaptive motion control law of a robotic wheelchair, Control Eng. Pract., 9 (2011), 113–125. https://doi.org/10.1016/j.conengprac.2010.10.004 doi: 10.1016/j.conengprac.2010.10.004
    [33] J. X. Zhang, G. H. Yang, Fault-tolerant fixed-time trajectory tracking control of autonomous surface vessels with specified accuracy, IEEE Trans. Ind. Electron., 67 (2019), 4889–4899. https://doi.org/10.1109/TIE.2019.2931242 doi: 10.1109/TIE.2019.2931242
    [34] J. X. Zhang, T. Chai, Singularity-free continuous adaptive control of uncertain underactuated surface vessels with prescribed performance, IEEE Trans. Syst. Man Cybern: Syst., 52 (2021), 5646–5655. https://doi.org/10.1109/TSMC.2021.3129798 doi: 10.1109/TSMC.2021.3129798
    [35] J. X. Zhang, T. Yang, T. Chai, Neural network control of underactuated surface vehicles with prescribed trajectory tracking performance, IEEE Trans. Neural Networks Learn. Syst., 52 (2022), 1–14. https://doi.org/10.1109/TNNLS.2022.3223666 doi: 10.1109/TNNLS.2022.3223666
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1301) PDF downloads(72) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog