All authors Fractional Hahn differences and fractional Hahn integrals have various applications in fields where discrete fractional calculus plays a significant role, such as in discrete biological modeling and signal processing to handle systems with memory effects. In this study, the existence and uniqueness of solutions for a Riemann-Liouville fractional Hahn integrodifference equation with nonlocal fractional Hahn integral boundary conditions are investigated. To establish these results, we apply the Banach and Schauder fixed-point theorems. Furthermore, the Hyers-Ulam stability of solutions is studied.
Citation: Nichaphat Patanarapeelert, Jiraporn Reunsumrit, Thanin Sitthiwirattham. On nonlinear fractional Hahn integrodifference equations via nonlocal fractional Hahn integral boundary conditions[J]. AIMS Mathematics, 2024, 9(12): 35016-35037. doi: 10.3934/math.20241667
All authors Fractional Hahn differences and fractional Hahn integrals have various applications in fields where discrete fractional calculus plays a significant role, such as in discrete biological modeling and signal processing to handle systems with memory effects. In this study, the existence and uniqueness of solutions for a Riemann-Liouville fractional Hahn integrodifference equation with nonlocal fractional Hahn integral boundary conditions are investigated. To establish these results, we apply the Banach and Schauder fixed-point theorems. Furthermore, the Hyers-Ulam stability of solutions is studied.
[1] | K. A. Aldowah, A. B. Malinowska, D. F. M. Torres, The power quantum calculus and variational problems, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 93–116. |
[2] | A. M. C. Birto da Cruz, N. Martins, D. F. M. Torres, Symmetric differentiation on time scales, Appl. Math. Lett., 26 (2013), 264–269. https://doi.org/10.1016/j.aml.2012.09.005 doi: 10.1016/j.aml.2012.09.005 |
[3] | G. C. Wu, D. Baleanu, New applications of the variational iteration method from differential equations to $q$-fractional difference equations, Adv. Differ. Equ., 2013 (2013), 21. https://doi.org/10.1186/1687-1847-2013-21 doi: 10.1186/1687-1847-2013-21 |
[4] | J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282 |
[5] | W. Hahn, Über Orthogonalpolynome, die $q$-Differenzenlgleichungen genügen, Math. Nachr., 2 (1949), 4–34. https://doi.org/10.1002/mana.19490020103 doi: 10.1002/mana.19490020103 |
[6] | R. S. Costas-Santos, F. Marcellán, Second structure Relation for $q$-semiclassical polynomials of the Hahn Tableau, J. Math. Anal. Appl., 329 (2007), 206–228. https://doi.org/10.1016/j.jmaa.2006.06.036 doi: 10.1016/j.jmaa.2006.06.036 |
[7] | K. H. Kwon, D. W. Lee, S. B. Park, B. H. Yoo, Hahn class orthogonal polynomials, Kyungpook Math. J., 38 (1998), 259–281. |
[8] | M. Foupouagnigni, Laguerre-Hahn orthogonal polynomials with respect to the Hahn operator: Fourth-order difference equation for the rth associated and the Laguerre-Freud equations recurrence coefficients, Bénin: Université Nationale du Bénin, 1998. |
[9] | K. A. Aldwoah, Generalized time scales and associated difference equations, Cairo University, 2009. |
[10] | M. H. Annaby, A. E. Hamza, K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 154 (2012), 133–153. https://doi.org/10.1007/s10957-012-9987-7 doi: 10.1007/s10957-012-9987-7 |
[11] | F. H. Jackson, Basic integration, Q. J. Math., 2 (1951), 1–16. https://doi.org/10.1093/qmath/2.1.1 |
[12] | A. B. Malinowska, D. F. M. Torres, The Hahn quantum variational calculus, J. Optim. Theory Appl., 147 (2010), 419–442. https://doi.org/10.1007/s10957-010-9730-1 doi: 10.1007/s10957-010-9730-1 |
[13] | A. B. Malinowska, D. F. M. Torres, Quantum variational calculus, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-02747-0 |
[14] | A. B. Malinowska, N. Martins, Generalized transversality conditions for the Hahn quantum variational calculus, Optimization, 62 (2013), 323–344. https://doi.org/10.1080/02331934.2011.579967 doi: 10.1080/02331934.2011.579967 |
[15] | A. E. Hamza, S. M. Ahmed, Theory of linear Hahn difference equations, J. Adv. Math., 4 (2013), 441–461. |
[16] | A. E. Hamza, A. S. M. Sarhan, E. M. Shehata, K. A. Aldwoah, A general quantum difference calculus, Adv. Differ. Equ., 2015 (2015), 182. https://doi.org/10.1186/s13662-015-0518-3 doi: 10.1186/s13662-015-0518-3 |
[17] | A. E. Hamza, S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Differ. Equ., 2013 (2013), 316. https://doi.org/10.1186/1687-1847-2013-316 doi: 10.1186/1687-1847-2013-316 |
[18] | A. E. Hamza, S. D. Makharesh, Leibniz's rule and Fubini's theorem associated with Hahn difference operators, J. Adv. Math., 12 (2016), 6335–6345. https://doi.org/10.24297/jam.v12i6.3836 doi: 10.24297/jam.v12i6.3836 |
[19] | T. Sitthiwirattham, On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different $q, \omega$-derivatives, Adv. Differ. Equ., 2016 (2016), 116. https://doi.org/10.1186/s13662-016-0842-2 doi: 10.1186/s13662-016-0842-2 |
[20] | L. M. Quarrie, N. Saad, M. S. Islam, Asymptotic iteration method for solving Hahn difference equations, Adv. Differ. Equ., 2021 (2021), 354. https://doi.org/10.1186/s13662-021-03511-9 doi: 10.1186/s13662-021-03511-9 |
[21] | F. Hira, Hahn Laplace transform and its applications, Demonstr. Math., 56 (2023), 20230259. https://doi.org/10.1515/dema-2023-0259 doi: 10.1515/dema-2023-0259 |
[22] | J. $\check{C}$erm$\acute{a}$k, L. Nechv$\acute{a}$tal, On $(q, h)$-analogue of fractional calculus, J. Nonlinear Math. Phys., 17 (2010), 51–68. https://doi.org/10.1142/S1402925110000593 doi: 10.1142/S1402925110000593 |
[23] | J. $\check{C}$erm$\acute{a}$k, T. Kisela, L. Nechv$\acute{a}$tal, Discrete Mittag-Leffler functions in linear fractional difference equations, Abstr. Appl. Anal., 2011 (2011), 565067. https://doi.org/10.1155/2011/565067 doi: 10.1155/2011/565067 |
[24] | M. R. S. Rahmat, The $(q, h)$-Laplace transform on discrete time scales, Comput. Math. Appl., 62 (2011), 272–281. https://doi.org/10.1016/j.camwa.2011.05.008 doi: 10.1016/j.camwa.2011.05.008 |
[25] | M. R. S. Rahmat, On some $(q, h)$-analogues of integral inequalities on discrete time scales, Comput. Math. Appl., 62 (2011), 1790–1797. https://doi.org/10.1016/j.camwa.2011.06.022 doi: 10.1016/j.camwa.2011.06.022 |
[26] | F. Du, B. Jia, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional $(q, h)$-differences, J. Differ. Equ. Appl., 22 (2016), 1224–1243. https://doi.org/10.1080/10236198.2016.1188089 doi: 10.1080/10236198.2016.1188089 |
[27] | T. Brikshavana, T. Sitthiwirattham, On fractional Hahn calculus, Adv. Differ. Equ., 2017 (2017), 354. https://doi.org/10.1186/s13662-017-1412-y |
[28] | N. Patanarapeelert, T. Brikshavana, T. Sitthiwirattham, On nonlocal Dirichlet boundary value problem for sequential Caputo fractional Hahn integrodifference equations, Bound. Value Probl., 2018 (2018), 6. https://doi.org/10.1186/s13661-017-0923-5 doi: 10.1186/s13661-017-0923-5 |
[29] | N. Patanarapeelert, T. Sitthiwirattham, On nonlocal Robin boundary value problems for Riemann- Liouville fractional Hahn integrodifference equation, Bound. Value Probl., 2018 (2018), 46. https://doi.org/10.1186/s13661-018-0969-z doi: 10.1186/s13661-018-0969-z |
[30] | J. Tariboon, S. K. Ntouyas, B. Sutthasin, Impulsive fractional quantum Hahn difference boundary value problems, Adv. Differ. Equ., 2019 (2019), 220. https://doi.org/10.1186/s13662-019-2156-7 doi: 10.1186/s13662-019-2156-7 |
[31] | V. Wattanakejorn, S. K. Ntouyas, T. Sitthiwirattham, On a boundary value problem for fractional Hahn integro-difference equations with four-point fractional integral boundary conditions, AIMS Mathematics, 7 (2022), 632–650. https://doi.org/10.3934/math.2022040 doi: 10.3934/math.2022040 |
[32] | E. A. Baheeg, K. M. Oraby, M. S. Akel, Some results on fractional Hahn difference boundary value problems, Demonstr. Math., 56 (2023), 20220247. https://doi.org/10.1515/dema-2022-0247 doi: 10.1515/dema-2022-0247 |
[33] | D. H. Griffel, Applied functional analysis, Dover Publications, 2002. |
[34] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 1988. https://doi.org/10.1016/C2013-0-10750-7 |