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1. Introduction

Quantum calculus, which is a form of calculus without the traditional concept of limits, deals with a
set of non-differentiable functions. Quantum operators are widely utilized in various mathematical
fields, including hypergeometric series, complex analysis, orthogonal polynomials, combinatorics,
hypergeometric functions, and the calculus of variations. Quantum calculus also has numerous
applications in areas such as quantum mechanics and particle physics [1-4].


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241667

35017

In 1949, W. Hahn introduced the Hahn difference operator [5]. This operator is a combination of
two well-known operators: the forward difference operator and the Jackson g-difference operator. The
Hahn difference operator is defined by

flgt + w) - (1)
g-—1+w

, % wo,

Dq,wf (1) =
and D, f(wo) = f'(wy) where wg := ﬁ We note that
D,,f(t) = A,f(t) wheneverqg =1, D,,f(t) = D,f(t) whenever w = 0,

and D,,f(t) = f'(t) whenever g = 1,w — 0.

The Hahn difference operator has been utilized in the study of families of orthogonal polynomials and
in solving certain approximation problems (see [6—8]).

The right inverse of the Hahn difference operator was introduced by Aldwoah in 2009 [9,10]. This
operator is expressed in terms of the Jackson g-integral, which contains the right inverse of D, [11],
and the Norlund, which involves the right inverse of A, [11].

In 2010, Malinowska and Torres [12, 13] introduced the Hahn quantum variational calculus.
In 2013, Malinowska and Martins [14] extended this work by presenting generalized transversality
conditions for the Hahn quantum variational calculus. Subsequently, Hamza and Ahmed [15-17]
developed the theory of linear Hahn difference equations and a general quantum difference calculus,
studied the existence and uniqueness of solutions for initial value problems using the method of
successive approximations, and proved Gronwall’s and Bernoulli’s inequalities in the context of the
Hahn difference operator. They also investigated mean value theorems for this calculus. In 2016,
Hamza and Makharesh [18] explored the Leibniz rule and Fubini’s theorem associated with the Hahn
difference operator. That same year, Sitthiwirattham [19] studied nonlocal boundary value problems
(BVPs) for nonlinear Hahn difference equations. In 2021, Mac Quarrie et al. [20] proposed the
Asymptotic Iteration Method for solving Hahn difference equations. In 2023, Hira [21] focused
on defining and proving fundamental properties of the Hahn Laplace Transform, including linearity,
shifting theorems, and convolution theorems.

In 2010, Cermdk and Nechvdtal [22] introduced the fractional (g, h)-difference operator and the
fractional (g, h)-integral for g > 1. In 2011, Cermdk, Kisela, and Nechvatal [23] presented linear
fractional difference equations with discrete Mittag-Lefller functions for ¢ > 1. Rahmat [24,25] studied
the (g, h)-Laplace transform and some (g, #)-analogues of integral inequalities on discrete time scales
for g > 1. In 2016, Du, Jai, Erbe, and Peterson [26] presented the monotonicity and convexity for
nabla fractional (g, h)-difference for ¢ > 0, g # 1. Since fractional Hahn operators require a fractional
parameter 0 < g < 1, the operators previously mentioned are not considered fractional Hahn operators.
The fractional Hahn operators have been studied by Brikshavana and Sitthiwirattham [27]. There are
research papers that focus on the BVPs for Hahn difference equations, such as [28-32].

Building on the foundation of quantum calculus, the study of fractional Hahn calculus has gained
increasing attention due to its ability to generalize classical difference and integral operators. The
fractional Hahn difference and integral operators provide a powerful framework for capturing memory
effects and non-local behaviors, which are essential in modeling complex systems. In particular, the
exploration of boundary value problems within this framework allows for a deeper understanding of
dynamic systems governed by fractional discrete processes.
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This research focuses on investigating boundary value problems involving fractional Hahn
operators, aiming to extend the applicability of fractional Hahn calculus to broader mathematical and
physical contexts. Such problems not only enrich the theoretical development of fractional discrete
calculus but also pave the way for applications in fields like control theory, population dynamics,
and numerical simulations. Specifically, we focus on a nonlocal Riemann-Liouville fractional Hahn
integrodifference BVP of the form

DS u() = AF [t,u(0), (W], ,u) (O] + uH [t u@), (] 0) 0], t€I]

q.w’

1% e1muln) = ¢i(w), nell, —{woT}, (1.1)
10 82 (T u(T) = ¢a(u),

where [wo, Ty = {¢"'T + wlkly 1 k € No} U{wo}; 0 <g < l,w>0; ae((l,2]; B,y,ve(ll
AueR F,H € C([wy, Tl X R X R,R) and gy, g2 € C([wo, T],, R*) are given functions; ¢y, ¢, :
C([wo, T4, R) = R are given functionals, and for ¢, € C([wo, T 1,0 X [wo, T1yw, [0, 00)), we define
operators

(‘Pgwu) (1) := (Ig’wgo u)(t) =T t)’) ft (t - O'q,w(s)):;wlgo(t, $) u(s) dy 5,
q wo ’

(L) @) = (D)0 = s | (i Tyl )) Ut 9) U(5) g (12)
q wo ’

Section 2 lays the groundwork by presenting fundamental definitions, properties, and lemmas. In
Sections 3 and 4, we delve into the existence analysis and stability analysis of problem (1.1). We
employ the powerful Banach fixed-point theorem to prove the existence and uniqueness of solutions,
and we use the Schauder fixed-point theorem to establish the existence of at least one solution. To
concretize our findings, Section 5 offers illustrative examples.

2. Preliminaries

We establish necessary notation, definitions, and lemmas for the subsequent theorems. Let g €
(0,1), w > 0 and define

n 3 n 1_qk
[n], := l—q:q +..+qg+1 and [n]q!::lk:l[Tq, n € R.

The g-analogue of the power function (a — b)g with n € Ny := [0, 1,2, ...] is defined by
n—1
(a-byg:=1, (@-bj:=||@-bg)  abeRr
k=0

The g, w-analogue of the power function (a — b)g,w with n € Ny := [0, 1,2, ...] is defined by

n—1

(@a-bjgo:=1, (a=bYj,:=|||a- ¢ +wiky], abeN

k=0

AIMS Mathematics Volume 9, Issue 12, 35016-35037.



35019

In general, for @ € R, we define

o ] (bz@)n
(Cl - b)%,w = (a — wO)Q n (a_wo)q

We note that, a% =a® and (a — a)o)%,w = (a — wy)® and use the notation (0)% = (a)o)%,w =0 fora > 0.
The g-gamma and g-beta functions are defined by

= ((a - wp) — (b — wy))

@
, a4 F wo.
q

L -git
Fq(X) = W, xeR\{0,-1,-2,...},
b _ I, (s)
_ x—1c1 _ s—1 ) 4q
B,(x,s) = j(; (1 =gty —dyt —Fq(x P

Definition 2.1. For g € (0,1), w > 0 and f defined on an interval I C R that contains wy := &], the
Hahn difference of f is defined by

flgt +w) - f(1)
g-1+w

D,,f() = for t # wy,
and D, f(wo) = f'(wo). Providing that fis differentiable at w,, we call D, f the q, w-derivative of f
and say that f is q, w-differentiable on I.

Remark 2.1. We give some properties for the Hahn difference as follows.
(1) Dq,w[f(t) + g(t)] = Dq,wf(t) + Dq,wg(t),
(2) Dq,w[a'f(t)] = a'Dq,wf(t)’
(3) Dq,w[f(t)g(t)] = f(t)Dq,wg(t) + g(qt + w)Dq,wf(t)a
f@| 80Dy f(t) = f()Dy8(1)
(4) Dyw = :
g g(ng(gr + w) )

Letting a,b € I CR witha < wy < band [k], = 11—qu, k € Ny := NU{0}, we define the ¢, w-interval

ab _
Iq’w - [a9 b]q,w

{qka rolkl, ke No} U {qkb twlkl, ke NO} U {wo)

= [a’ (‘L)O]q,w U [CL)(), b]q,w
= (a,b),,Yla,b} = [a,b),,Y{b} = (a,b],,Yla},

T . wo, T _
and L, = I =lwo, Tl

Observe that for each s € [a, b, the sequence {0} ()}, = {¢"s + w[k],},_, is uniformly convergent
1o wy.
We also define the forward jump operator as O'l;’w(l‘) := ¢*t+ wlk], and the backward jump operator

as pf (1) := H;# for k € N.
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Definition 2.2. Let I be any closed interval of R that contains a,b and wy. Assuming that f : I — R
is a given function, we define the q, w-integral of f from a to b by

b b a
f fdy ot = f fdy .t - f f(d, ot

f f®)dgot = [x(1 - ) — w] Z q" f(xg" + wlkl,), xel.
wo k=0

where

Providing that the series converges at x = a and x = b, we call f is q, w-integrable on [a, b] and the
sum to the right hand side of above equation will be called the Jackson-Norlund sum.

We note that, the actual domain of function f defined on [a, b],,, C I.
The following lemma presents the fundamental theorem of Hahn calculus.

Lemma 2.1. [9] Let f : I — R be continuous at w,. Define

F(x):= f fd,t, xel.
wo
Then, F is continuous at wy. Furthermore, D, ,F(x) exists for every x € I and
Dy F(x) = f(x).
Conversely, we have
b
f D, ,F(t)d, .t = F(b) — F(a) forall a,b € I.

Lemma 2.2. [19] Let g € (0,1), w > 0, and f : I — R be continuous at wy. Then,

! T t t
f f f(S) dq,ws dq,wr = f f(S) dq,wr dq,ws.
wo [oh) w( qs+w

Lemma 2.3. [19] Let g € (0, 1), and w > 0. Then,

! ¢ . )
f dgws =t—wy and f [t — 0g(8)]dyes = ﬂ_
w( q

wo 1+

Next, we present the definitions of the fractional Hahn integral and the Riemann-Liouville-type
fractional Hahn difference.

Definition 2.3. For a,w > 0, g € (0,1) and f defined on [wy, T, the fractional Hahn integral is

defined by
100 = f (1 = T4 ) (8
q
1_
e “’]Zq i O) 1(5,0),
q

and (I}, )(t) = f(0).
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Definition 2.4. For a,w > 0, g € (0,1), N-1 < a < N,N € N, and f defined on [wy, T,
fractional Hahn difference of the Riemann-Liouville type of order « is defined by
@ - N N-a
Dq,a)f(t) L (qujqw f)(t)

1 !
- o fw O (- O'qw(s)) = (5.

The fractional Hahn difference of the Caputo type of order « is defined by
Dy f0) = Ty Dy,N0
ﬁ fw ; = aqw(s))*DN F($)dy05,
and Dg,,f(1) = “D),f(1) = f(0).
Lemma 2.4. [27]Let « >0,q€ (0,1),w >0and f:
I3 D4uf® = f(O) + Ci(t = wp)*™" +

q,w g,w

Iqu — R. Then,

ot Cn(t — wo)* 7V,

for some C; e R,i=N;y and N-1<a <N,NeN.
Lemma 2.5. [27] Let « >0,q€ (0,1),w >0, and f: Iqu — R. Then,

T2 .CD% (1) = f(t) + Co + Cy(t — wo) + ... + Cyy (t — wo) ™,

for some C; € R,i=Nyy_; and N-1<a <N,NeN.
For computational efficiency, we offer these auxiliary results

[27] Let a,B>0, p,q € (0,1), and w > 0. Then,

Lemma 2.6.
f (- aqw<s)) (5~ W) dgos = (1= w0)™PByB+ 1,a),
¢ X a— _ a+p
ff(t—(rpw(x)) l(x O'qw(S)) 1dqwsa,’,,w)c = %Bp(ﬂ+l,a).
wp v wo q

To establish a foundation for the analysis of problem (1.1), we present a lemma addressing its linear

variant and providing a corresponding solution representation
Lemma 2.7. Let Q #0, a € (1,2], B€ (0,1}, @ >0, p,ge (0, 1), p=¢", meN, 0 =w(1L) and
20> R) be given function. Then the problem

he C([(Uo, T]
Dy ,u(t) = h(1),
7% g\u(m) = ¢1(w), 1€ [wo, Tlgo — fwo. T}, 2.1)
18,82 (T u(T) = ¢(u),
has the unique solution
! (t = wp)*™!
|t- O'qw(s)] (5)d, s + T[8,707 - 8;0,] (2.2)

u(t) =
Ly(@) Ju,
Volume 9, Issue 12, 35016-35037.
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(t — wp)*™?
A

where the functionals and the constants are defined by

| A0, - 2,01,

A = ﬂT‘B _ﬂ BT9

Ay = T (,3) gl(S)(n Ty (5 = 00)* dys,
Bn = T (ﬁ)f gl(s)(n O-qw(s))qw(s_wO)a quws
1
Ar = T (ﬁ) gZ(S)(T O-qw(s))qw(s_wO)a 1dqa)s
q
1 T p-1 -2
Br = 1 [ 8T = i ts = w0 s
q w(
On[¢1ah] = ¢1(M(77))— q(ﬁ) Fq( )f f gl(x)(n O-qw(x))qa)[x O-qw(s)]
h(s)dy..s5dg..x,

1 T X
Orl¢s, h] = T)) - T-0,. > w L
10 = D)~ s [ [ T - fE - ol
h(s)d, ., 5dg ., x.
Proof. Taking the fractional Hahn integral of order a for (2.1), we obtain

u(t)

I3 (@) + Ci(t — wo)*™" + Cat — wo)* >

1 | a-1 a2
= () f% (f O'qw(s)) h(s)dys + Ci(t — wp)*™" + Cot — wo)* 2.
Multiplying (2.10) by g;(#) and taking the fractional Hahn difference of order 3, we obtain
a-1
0 a(u() = BT, (a) (5)1"q( ) f f gi1(x)(t — oy, w(x))qw [x = 0 () h()d 05X

gl(S)(t T [C1(s — w0 + Ca(s — o) 2d .

q (ﬁ) wo
Multiplying (2.10) by g,(¢) and taking fractional Hahn difference of order 3, we obtain

[g,ng(t)u(t) = (,B)F( )f f gZ(x)(t O-qw(x))qw[x O-qw(s)](Z lh(S)dq,deq,wx
q q

gz(S)(f T )oa[C1(5 = w0 + Ca(s — o) 2|d .

q(ﬂ) wo

Substituting ¢ = 1 into (2.11) and using the first condition of (2.1), we have

[ [ 900 - o dusle
Fq(ﬁ) w 1 e it 0 qw 1

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

2.11)

(2.12)
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1 g _
+[Fq(ﬁ) . g1(s)(n - O'q,w(S))%(S - wo)“_qu,a,s]Cz (2.13)

= ﬂnCl +B,7C2 = On[(p],h].

Substituting ¢ = T into (2.12) and using the second condition of (2.1), we have

| 1 fT 22()T ~ 040())go (s — wo)™'d ws|C1
Fq(ﬁ) 0 9 q q,

1 T _
i | o= F4()go (5 = w0)*2dy05|C2

= ArCi +BrCy = Orle, hl.
To find C, and C,, we solve the system of Eqs (2.10) and (2.12). Then, we obtain

8B,0r — 870,
A
C, - ArO, — A,Or
A
where A, A, Ar, B,, Br, 0,, Or are defined as (2.3) — (2.9), respectively.
Substituting the constants C;, C; into (2.10), we obtain the solution for 2.1, as shown in Eq (2.2). O

G

To prove the existence of a solution to Eq (1.1), we will employ the well-known Schauder’s fixed
point theorem.

Lemma 2.8. [33] (Arzeld-Ascoli theorem) A set of functions in Cla, b] with the sup norm, is relatively
compact if and only if it is uniformly bounded and equicontinuous on [a, b].

Lemma 2.9. [33] If a set is closed and relatively compact, then it is compact.

Lemma 2.10. [34] (Schauder’s fixed point theorem) Let (D, d) be a complete metric space, U be a
closed convex subset of D, and T : D — D be the map such that the set Tu : u € U is relatively
compact in D. Then the operator T has at least one fixed point u* € U: Tu* = u*.

3. Existence and uniqueness results

In this section, we prove the existence results for problem (1.1). Let C = C (I;w, R) be a Banach
space of all functions u with the norm defined by

llullc = llull + 1Dg ,ull,

where [lul| = max {|lu(0)]} and ||Dy ,ull = max {|D] ,u(D)l}.
tell, ’ rell ’

q.w

Lemma 3.1. (C,|| - ||c) is Banach space.

Proof. Let {u,} . be any Cauchy sequence in the space (C,|| - |lc). Then Ve > 0, there exists N > 0
such that

it = tlle: = ity = tll + 1D}, 1t = D, ttll < &,

AIMS Mathematics Volume 9, Issue 12, 35016-35037.
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for n,m > N. Therefore, for any fixed ¢, € I;w, the sequence {u,())}>, is a Cauchy sequence in R. In
this way, the unique u(f) can be associated for each ¢ € I;w. This defines (pointwise) a function u on
I;w. And can be shown u € C and u,, — u with ||u,, — u,|| + D ,un — Dyl < 0. Letting n — oo,

for every t € IT _, the following inequality holds.

q.w’

|u(t) — u, ()] < eforallm > N.

This means that u,,(f) converges to u(¢) uniformly on I;w. Since the u,, are continuous on I;w and the
convergence is uniform, the limit function u is continuous on I;w. Hence u € C and u,, — u. Next, that
[l — ty|| + ||Z);’wun - Z);’wumll < & will be proven. Consider for ¢ € I;w

|ue| + IZ)Z,wul = u(t) — u,(t) + u, ()| + |Z);,wu - Z);’wum + Z);’wuml
< u@) = un@) + (O] + D] ,u — Dy | + D]t
< &+e€&.
This implies
llull + 1D, ,ull < oo.
Hence, (C, || - ||c) is a Banach space. O

By Lemma 2.7, replacing h(t) by AF [t, u(t), (‘I’Zywu) (t)] + uH [t, u(t), (T;’wu) (t)], we define an
operator A : C — C by

(A)E) 3= o f t [z—aq,w(s)];;l{AF |5, u(9). (¥ ,u) ()| + uH [ 5, u(5)., (0 1) ()| }dgo
q wQ
O 0401, Fy + H) - 8,050, F, + )
T 2, 0. b ) = L0500, F, + ), G.1)

where A, A,, B,, Ar, and By are defined in (2.3)—(2.7), respectively, and the functionals O,*][¢1, F,+
H,], O;¢,, F, + H,] are defined by

Tt p-1 a-1
‘f&@M—%Amwh—%Amwx

1
Ojldr. Fu+ Hil = 1(ul)) = s f
q q w( w0

{AF |5, u(s), (W] ) ()] + uH [ 5, u(5), (Y}, 1) (9)] }dy 56y, (3.2)
T X
O;[QSZ» Fu + Hu] = ¢2(M(T)) - m f(;o fc;o g2(x)(T - O-q,w(x))lg,;wl[x - O-q,w(s)]z;,;wlx
{/lF [s, u(s), (‘Pzwu) (s)] + uH [s, u(s), (T;,wu) (s)] }d,,,wsdq,wx. 3.3)

Obviously, problem (1.1) has solutions if and only if the operator A has fixed points.
Theorem 3.1. Assume that F,H : I;w X R X R — R is continuous, ¢, : I;w X I;w — [0, 0) is

continuous with ¢, = max {(p(t, s):(t,s)el], x I;w} and g = max {w(t, s):(t,s) el x I;w}. In
addition, suppose that the following conditions hold:

AIMS Mathematics Volume 9, Issue 12, 35016-35037.
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(H,) There exist constants M; > O such that for each t € I;w andu;,v; eR, i=1,2,
|F[t,ur, 2] = F[t,v1,v2]| < Mi|uy = vi| + Mous = va.
(H,) There exist constants N; > 0 such that for each t € I;w andu;,v; e R, i=1,2,
|H [f, w1, uz] — H[t, v, 2] | < N1|u1 - v1| + N2|u2 - vz|.
(H3) There exist constants wi, w, > 0 such that for each u,v € C,
[¢100) = $10)| < @i |ju = V]|, and |p2@) = $2)] < waju ]|

(Hy) Foreacht € I;w ,81<81() <Gy and g, < g:(t) < Go.

G ( _ )(y+ﬁ®* G (T— )(Y‘Fﬁ@* . .
(Hs) X = L]® + 2 21 | 4 @y + Ojwr < 1,
where
oo(T — wp)” Yo(T — woy)™”
= Al My, 2 N+ N Y
L M1+ M, T,y + 1) [+ ulm ZFq(—y+1)]

(T —wp)* (T —wy)™”

O = + s
Fa+1) Tja-v+1)
©, 1= 0,+0,,
@*T = ®T + @T,
1 o a-

0, := min |A|[max |ByI(T — wo) ' + max Apl(T = wo) 2]’
O = [max IBrI(T = wo)*™ + max |A7|(T — wp)* ],

) o Ty yian Tgla=1)
0, = B, (T — wp) ' ——— 4+ max |A,|(T — wy) "2 —1——|,

; — IAI[maxl ol( W) @) max |A,|( wo) Ta—1- v)]
_ I',(@) I,(a-1)
6 _ BT — —vta—1 q " AT — —-v+a-2__ "4\ S

T |A|[max| rl(T" = wo) L (a—-v) max |Ar[(T' = wo) F(a-1-v)

Then, problem (1.1) has a unique solution.

Proof. For each t € I;w and u, v € C, we find that

¥ 00 - (00| < = ( ; f (T = 04l () = v(8)|dy s
< (Poll—!u(;)v”f (T O-qw(s))qw gwS
_ ollu— VI(T — wp)”
T, + 1)

Similarly, we have |} ,u)(#) = (T ,)(0)| < “EE =

(3.4)

(3.5)

(3.6)
(3.7

(3.8)

(3.9)

(3.10)

]. (3.11)
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We set

Flu = vl(0) := |Flt, (0, (¥, 1)(0] = Flt,v(0), (¥ O]
Hlu = vI(0) = |HIt, u(x), (75,100 = I v(0), (T, O]

Then, we obtain

O;[¢l’ Fu + Hu’] - O:;[¢1’ v

1 n - _
< | - p 0| + s f f 210007 = T (1 = (95
q q wo Y wo
XAAF Ju = vI(s) + uHu — vI(5)}dy 0 5dg X
Gi(n — wy)™* @o(T — wy)” Yo(T — wp)™

< willu =vlle + F(+—,8+1)(/1[M + Mzm] + u[N; + sz])llu —clle
= wilu—llg + 2@,
- CT T a+B+1) ¢
_ LG (17 = wo)™
= o+ Farprn Ml

Similarly, we obtain

LGo(T — wy)**
Fa+p+1)

Oyl¢a, Fu+ H,) = Ol¢a, Fy + H| < (w2 + Yl = e

Next, we find that

| A1) — AW @)

1 r o
< T ) T = TS AT = vi(s) + pHlu = vI(5) s
q
(T - wo)a_ . . . .
T“BT' On[¢l’ Fu + Hu] - On[¢la v + |Bn| OT[¢2a Fu + Hu] - OT[¢2’ V v ]
(T — wp)*™? . . . .
IA| [|ﬂT|On[¢1’F” +H,] _On[¢1’ v + |ﬂn|OT[¢2’FM+HM_OT[¢2$FV+HV] ]
(T —wp)®  Gi(n— wo)*POr + Go(T — wy)***O,
< | (Fq(a+ 5t Fa@ 5D ) + Orw; + O |llu - viic. (3.12)
Considering (D, Au), we have
1 t X e N
(D, ,Au) = ————— (t—0,0(x) 1(x oy, w(s))fl{/lF(s u(s), (¥7 ,u)(s))

rq(_v)rq(a) wo Y wo
+/JH(S I/t(S) (TV M)(S))} qudqwx {BTO* [¢19 Fu + Hu] - BnO;"[gbZaFu + Hu]}

_ a-1
f (- g st ) “’0) dyos + (A7 Ol 1, Fo + Hy]

q(_ )
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-y 1(S wO)a 2

— B,05[¢s, F, + H,] ~ T dys. (3.13)

Hence,

(T — wp)™ N G1(1 — wo)*POr + Go(T - wo)‘“’ﬁ@_n)
T @-v+1) T (a+B+1)
+ 1O + W0 |l — Ve (3.14)

(D}, Au)(t) - (D}, A0 < [ £

From (3.12) and (3.14), we find that
lA@) = AW)llc < xllu = vlle.

Thus, the operator A is a contraction. Then, by the Banach contraction mapping principle, A has a
fixed point, which is the unique solution for (1.1).
We next show the existence of a solution to (1.1) by the following Schauder’s fixed point theorem.

Theorem 3.2. Let us assume that F,H : I;w X R X R — R are continuous functions and ¢, ¢, :
C(T ,R) — R are given functionals. Let us suppose that the following conditions hold:

q,w>

(Hg) There exist positive constants 7}, 7 such that for each ¢ € I;w andu; eR,i=1,2,
|F[t,u1,u2] | <F and |7A{ [z, uy, us] | <H.
(H7) There exist positive constants O, O, such that for each u € C,
|¢1(u)| <O, and |¢2(u)| <0,.

Then, problem (1.1) has at least one solution on I;w.
Proof. We organize the proof into three steps.

(i) For each t € I} , and u € Bg, we obtain

X AF +uH)G
O,,[¢1’Fu + Hu] < Ol + q(ﬂ)lli (CY) 1 f f (77 O-qw(x))qw[x O-qw(s)]qa) qudqa)x
_ a+f
<O+ G1(n = wo) (/Wﬂﬂ{)_ (3.15)

Fa+p+1)

Similarly, we have

F » _ a+f
< 0, + P+ — W)™ (3.16)

O;l¢, F, + H,] T (a+B+1)
q

From (3.15) and (3.16) and for each ¢ € I;w, we find that
(A @) < (T T ()L AF s, u(s), W] ,1)(5)] + pHLs, u(s), (X} ,1)(5)]|dg.0s
() ( )
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(T — wp)*™!
IA]|

(T — wp)* 2
IA|

< (AF + uﬁ)[

181110511, Fu + Hl +18,107 g2, F + H,I|

A0 (61, F + H,l + A0 (o, Fu + H,I|

(T — wp)” N Gi( — w))*POr + Go(T — w))***O,
T+ 1) T a+f+1)

] + O]@T + 02®77'
(3.17)

In addition, we obtain

(T = w)™™ N G1(17 — wo)*POr + Go(T - wo)o‘*ﬁ@n]
T (a—v+1) T (a+B+1)
+01®T +02®U‘ (318)

(D}, Auw)®)| < (AF + pH)|

From (3.17) and (3.18) we obtain

G117 — wo)" O + Go(T — wy)* ),

[l < (F + prO] @ + T a+p+1)

] + 01®;~ + Oz@é

< o0

2

which implies that A(Bg) is uniformly bounded.

(i) We show that A(Bg) is equicontinuous. for any ¢, 1, € I;w with #; < t,, we have

|(Au)(t2) — (A1)
. AF + AH)
T Ty e+ 1)
s |(f2 —wo)* ' = (1 - wo)“_l|{
A
s |(f2 = w0)* ™% = (11 — wo)*™?|
A

|(t2 = wo)* = (11 = wo)”|

BrllO,[¢1, Fu + H,ll + 18,1072, Fu + H,l}

A0, [¢1, Fu + Hol + |AO07 (2, Fu + Hol} (3.19)

and

(D}, A1) — (D], , Au)ty)|

AF + AH)

T Ta-v+1

T (@)t — wo)* ™' = (1) — wp)* ™!
IAIC (@ = v)

T (@ - D|(t — wo)*™ 2 = (t; — wp)* 7>

ATy (@ —v—1)

|(f2 —wo)"" = (11 — w)"”

“BT”O;B{)I’FM + Hu]l + |Bn||O*T[¢2a Fu + Hu]l}

{(ArNO,[¢1, Fu + Holl + | AO7 42, Fuy + Hl}-
(3.20)
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The right-hand side of (3.19) and (3.20) tends to zero as #; — f,, independently of u, which implies
that A(Bg) is an equicontinuous set. By using the Arzela—Ascoli theorem, the set A(Bg) is compact.

(iii) Finally, we show that W = {u € C : u = {Au,0 < { < 1} is a bounded set. Let u € W. Since
lu| = Z||Au|| < || Aullc , and from (i) ||Aul|c is bounded, hence ‘W is bounded. Then, as in (i), we have

lu@)| < 2lAullc
G1(n — wo)*PO; + Go(T — wp)* 7@
Fq(ax +8+1)

< (AF + pH)| @ + | +0:0; +0,0;,
Therefore, ‘W is bounded.

4. Hyers-Ulam stability analysis result

In this section, we study the Hyers-Ulam stability of system (1.1). Let & > 0 and ¢ : I;w — Rbea
continuous function. Consider

DS u() = AF [t u(0), (¥ ,u) (0] = uH [t u(e). (), ,u) ()] ‘ <es(t), tell

q.w’

I8 &iu(m) = ¢1(w), nell, —{w.T}, (4.1)
1% 82 (T u(T) = go(u).

Now, we give out the definition of Hyers-Ulam stability of system (1.1).

Definition 4.1. System (1.1) is Hyers-Ulam stable with respect to system (4.1), if there exists Apy > 0
such that
|ﬁ - ﬁl < SAF,H

forallt eI’ , where ii is the solution of (4.1) and ii is the solution for system (1.1).

q,w "’

Theorem 4.1. Assume that (H,) — (Hs) hold, and max o(t) < 1. Then the system (1.1) is Hyers—Ulam

1€l

stable with respect to system (4.1).

Proof. Let D ,i(t) = AF |t a(0), (¥} 1) ()] + uH |t, a(z), (1%, i) ()] + k(7). Consider

DS () = AF [t,a(0), (¥],,7) (0] + uH |t a0, (Y},,8) O] + k@), 1€ 1L,

I8 ,8ul) = ¢1(w), nell, —{w.T}, (4.2)
I’;’wgz (T u(T) = ¢o(u).

Similarly to the system in Theorem 3.1, system (4.2) is equivalent to the following equation in
Lemma 2.7.

i) = f t [t = 0l )| {AF [s,a5), (W.,0) (9] + H [, 85), (Y1) ()] + K(8)}dl s

Fq(a) wo quw
(t = wp)”!

~—{B10,(¢1. Fa + Hy + k) = B,07(¢. Fy + Hy + b))
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(t — wp)*™?
A

where A, A, B,, Ar, and By are defined in (2.3)—(2.7), respectively, and the functionals ij; [¢1, Fr +
Hj; + k], O3l¢», Fi + Hy + k] are defined by

{ﬂr(jf](¢1, Fy+ Hy + k) — A0 (¢, Fa + Hy + k)}, (4.3)

_ 1 1o _ o
O,l¢1, Fu + Hy + k] := ¢1(u(n)) — TG f f g1(0)(n - O-q,w(x))%[x - O'q,w(S)]q,T,l
q q wo Y wo

X {AF [s.a(5), (,,0) ()] + uH [ 5. a(s). (0}, 1) ()] + k(5) )5y 0.
(4.4)

= 1 T X . .
Orl¢o, Fu+ Hy + k] := ¢o(u(T)) — L@@ f f g(0)(T - aq,w(X))ls,Tl[x — e
q q wy Jwy

x AF [, a(s), (W7,,2) ()] + uH |5, 4(5), (Y7, 1) ()] + k(8) |05

4.5)
Now, we define the operator as
(Au)(t) = (Au)D) + KO, (4.6)
where
Kty = — f t lt-c (s)]ﬂk(s)d s+ w[@ Orlk] - 870, k]| 4.7)
Ly(@) Ju, b a0 A ' |
_ -2
%[%On[k] - A,0:1K]),
where the functionals are defined by
1 1 T -1 o
Okl = k) - | 0 | 81090~ 0 (O - A sdr. @D
1 1 T X . .
Orlk] = K(T) - BT fw 0 fw 0 & (x)(T - O'q,w(x))é%[x - O'q,w(s)]%jlk(s)dq,wsdq,w. 4.9)
Note that

AU — Av|| = || Au — AV (4.10)

Then the existence of a solution of (1.1) implies the existence of a solution to (4.2). It follows from
Theorem 3.1 that A is a contraction. Thus there is a unique fixed point & of A , and ii of A.

Since t € Iqu and max o(t) < 1, we obtain
’ tell,

K1l = max [K ()] < &f, (4.11)

tely,

where

o [900(T —wo)”  Yo(T — wo)_y][q) N G1(n = wo)* 05 + Gy(T - wo)a+ﬁ®;

L,y+D) & T+ T @B |+o;+0; @12
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®, ®} and G);‘; are defined by (3.5)—(3.7), respectively.
Hence, we obtain

G — @l = || AR — Aal| = | A7 — A + K@)l = Az ~ Adll + K@l = xlla - @l + ep. (4.13)

By condition (Hs), we obtain

I — &l < 2, (4.14)
I-x
LetApy = %{, then
||z — @l < eArn. (4.15)
This completes the proof. m|
5. Some examples
To elucidate our results, we present several illustrative examples.
Example 5.1. Consider the following fractional Hahn BVP
. plsitan U]+ e OO (@)
D% lu(t) = 2 =
2:3 100 + egcos*2n) 1+ |u()]
e—[cosz(27rt)+5] |l/t(l)| +e (20t+") 1 ll/l(l‘)| 2
2 , te[=,10]: 5.1
(t + 10)? I+ |u(®)l [ Iys -1
subject to fractional Hahn integral boundary condition
1 23 - C,-|u(t,~)| ; 23
I7 (2e + - )= —, fieod, (),
%%( ¢ Sm( )) u(55) T+ ) 714(5)
1 - D;|u(t; .
I? (27 + cos(10))°u(10) = Diluttl , teod; (10), (5.2)
33 1+ |u(;)] 23
sl sl 1 N 4
where ¢(t, 5) = s Ut s) = ot and C;, D; are given constants, with 2000 < Z C; < 2000 and
1 = e
—— < ) D; <
1000 — ; 1000
Heea =3 f=37=1q=5w=5v=3he==3T=10y=0],00=3
o Cilu(t) _ N Dilu(®)

1+ |u()| ? 1+ Ju()| g1(t) = (2e+sin1)’ and ga(r) = (2 +cos 1)’.

1
oitem) O]+ e u()
2°3
Flt,u(), (¥],)0)] =|

100 + ecos*2m) 1+ ()| '
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and
2
teosan (O] + e PRI u(o)
H[t, u(®), (Y )©)] = =N
Forall t € I'°, and u,v € R, we have
2°3
|F[t,u,‘1” u]—F[t,v,‘P” v]| < L|u—v| A 24N
i - 101 101e™ v
Hlt,u, Y Hi[t, ‘Y‘V <—lu—-vl+ —|Y7 — 7).
|Hlt,u,) u] - H[t,v, ]| < 100Iu vl 0007 L= 1

Thus (H;) and (H;) hold with M; = 0.0099, M, = 0.000428, N; = 0.01 and N, = 0.00351.

Forall u,v € C,

|61(1) = 1 (V)|
|p2() — $2(v)| <

IA

" -]
2000~ Ve

A

= v
1000~ Vie:

So (H3) hold with w; = 5555 = 0.00157 and w, = 1555 = 0.00272.

Moreover (H,) hold with g; = 19.683,G, = 41.429, g, = 27.912 and G, = 53.048.
After calculating, we find that

A, =11.1274, Ay =455.939, B, =65.1277, By =83.3932,

|A| = 28766.3089, ¢y = 0.0000617, ¢ = 0.00072.

We can show that
L =0.0004952, O =0.0140446, ©, =0.00704333, 67 = 0.0012905,

0, = 0.00130252, ©; =0.01531365, 0, = 0.0083485.

So, (Hs) holds with
X = 0.027724 < 1.

Hence, by Theorem 3.1, the BVP (5.1)—(5.2) has a unique solution on /!9, .
2°3
In view of Theorem 4.1, we have y = 0.049859 and

AF,H ~ (0.051282.

Therefore, the BVP (5.1)—(5.2) is Hyers-Ulam stable.

For the specific case where ¢; = 10, ¢, = 20, and g, = g, = 30, we examine the numerical solution
to the BVP (5.1)~(5.2) when we let h(t) = AF [t,u(t), (¥} ,u) ()| + uH [t u(e). (T} ,u) ()] = ( = wo).
From Figure 1, we obtain the numerical solution graph for 8 = 0,0.25,0.5,0.75, 1, 1.5,2. The graph

shows that the solution of the equation converges to zero as t — wy.
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1200 T T T T T T T T T

——0=0
—o—0=0.25
1000 |- 0=05 8
6=0.75
0=1
—— =15
800 [- —o—06=2 4

600 T

Figure 1. The numerical solution when 6 = 0,0.25,0.5,0.75,1, 1.5, 2.

O
Example 5.2. Consider the following fractional Hahn BVP
12 wsfunyi o] 1 1 wmfaoert o)
5 —(t+5)| )+ 2 | ut) —(t+m)| u+1? | u(o)
DY u(t) = —(t+=)e P+ —(t+2)e P el (5.3)
12 15 5 5 3 12
with fractional Hahn integral boundary condition
> 299 252 utt)
I%%[n+sm(256)u(256)— ZCe
1? ,[e + cos(15)]u(15) = Z Die "t e ol L (15), (5.4)
32 = 42
[ee) 1 (e8]
where C; and D; are given constants with 300 < ,Z:(; C; < % and 1000 < ; D; < ILOO
Herea:%’ﬁ:%,’y:%’q:%,V:%’w:%’wozﬁqzz,T: 5’]’]:0'1’%:%’&:6_5’

u=e".
It is clear that |F[t u, ‘Pg,wu” <i=F,
|62w)| < 15 = 0»
Hence, (H6) and (H7) hold. Therefore, the BVP (5.3)—(5.4) has at least one solution on / 153 by
theorem 3.2. v
For the specific case where ¢; = =5, ¢2 = 1555 and g1 = g2 = 1, we examine the numerical solution
to the BVP (5.3)~(5.4) when we let h(t) = AF [t,u(®), (¥} ,u) ()| + uH [t u(2). (T ,u) ()] = (t = o).
From Figure 2, we obtain the numerical solution graph for 8 = 0,0.25,0.5,0.75,1, 1.5,2. The graph
shows that the solution of the equation converges to zero as t — wy.

Ht,u, Y’ u]| <+ =HAforte 1}53 and |¢,(u)| < 2% = O,

’2
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Uy

1500

1000 - b

500
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t

Figure 2. The numerical solution when 6 = 0,0.25,0.5,0.75,1, 1.5, 2.

6. Conclusions

We have successfully demonstrated the uniqueness and stability of solutions for the nonlocal
Riemann-Liouville fractional Hahn integrodifference BVP through the application of the Banach fixed
point theorem. Furthermore, we have established the existence of at least one solution using Schauder’s
fixed point theorem. Our innovative approach features the integration of two fractional Hahn difference
operators and three fractional Hahn integrals.
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