In this work, we consider a generalization of the nonlinear Langevin equation of fractional orders with boundary value conditions. The existence and uniqueness of solutions are studied by using the results of the fixed point theory. Moreover, the previous results of fractional Langevin equations are a special case of our problem.
Citation: Zheng Kou, Saeed Kosari. On a generalization of fractional Langevin equation with boundary conditions[J]. AIMS Mathematics, 2022, 7(1): 1333-1345. doi: 10.3934/math.2022079
In this work, we consider a generalization of the nonlinear Langevin equation of fractional orders with boundary value conditions. The existence and uniqueness of solutions are studied by using the results of the fixed point theory. Moreover, the previous results of fractional Langevin equations are a special case of our problem.
[1] | B. Ahmad, J. J. Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equ., 2010 (2010), 649486. doi: 10.1155/2010/649486. doi: 10.1155/2010/649486 |
[2] | B. Ahmad, J. J. Nieto, A. Alsaedi, H. Al-Hutami, On a $q$-fractional variant of nonlinear Langevin equation of different orders, J. Contemp. Mathemat. Anal., 49 (2014), 277–286. doi: 10.3103/S1068362314060041. doi: 10.3103/S1068362314060041 |
[3] | Z. Czechowski, Modelling of persistent time series by the nonlinear Langevin equation, In: Complexity of seismic time series, Elsevier, 2018,141–160. doi: 10.1016/B978-0-12-813138-1.00005-5. |
[4] | R. Darzi, B. Agheli, J. J. Nieto, Langevin equation involving three fractional orders, J. Stat. Phys., 178 (2020), 986–995. doi: 10.1007/s10955-019-02476-0. doi: 10.1007/s10955-019-02476-0 |
[5] | S. Fallah, F. Mehrdoust, On the existence and uniqueness of the solution to the double Heston model equation and valuing Lookback option, J. Comput. Appl. Math., 350 (2019), 412–422. doi: 10.1016/j.cam.2018.10.045. |
[6] | H. Fazli, J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos, Soliton. Fract., 114 (2018), 332–337. doi: 10.1016/j.chaos.2018.07.009. doi: 10.1016/j.chaos.2018.07.009 |
[7] | A. Khan, H. Khan, J. F. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. doi: 10.1016/j.chaos.2019.07.026. doi: 10.1016/j.chaos.2019.07.026 |
[8] | A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Soliton. Fract., 122 (2019), 119–128. doi: 10.1016/j.chaos.2019.03.022. doi: 10.1016/j.chaos.2019.03.022 |
[9] | H. Khan, J.F. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law, Math. Method. Appl. Sci., 43 (2020), 3786–3806. doi: 10.1002/mma.6155. doi: 10.1002/mma.6155 |
[10] | A. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Khan, Dynamical study of fractional order mutualism parasitism food web module, Chaos, Chaos Soliton. Fract. 134 (2020), 109685. doi: 10.1016/j.chaos.2020.109685. |
[11] | A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Res. Phys. 22 (2021), 103888. doi: 10.1016/j.rinp.2021.103888. |
[12] | A. Khan, H. M. Alshehri, J. F. Gómez-Aguilar, Z. A. Khan, G. Fernández-Anaya, A predator–prey model involving variable-order fractional differential equations with Mittag-Leffler kernel, Adv. Differ. Equ., 2021 (2021), 183. doi: 10.1186/s13662-021-03340-w. doi: 10.1186/s13662-021-03340-w |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Netherlands: Elsevier, 2006. |
[14] | P. Langevin, On the theory of Brownian motion, Compt. Rendus, 146 (1908), 530–533. |
[15] | J. T. Lü, B. Z. Hu, P. Hedegȧrd, M. Brandbyge, Semi-classical generalized Langevin equation for equilibrium and nonequilibrium molecular dynamics simulation, Prog. Surf. Sci., 94 (2019), 21–40. doi: 10.1016/j.progsurf.2018.07.002. doi: 10.1016/j.progsurf.2018.07.002 |
[16] | W. Lv, Existence of solutions for discrete fractional difference inclusions with boundary conditions, J. Contemp. Mathemat. Anal., 52 (2017), 261–266. doi: 10.3103/S1068362317060012. doi: 10.3103/S1068362317060012 |
[17] | H. R. Marasi, H. Afshari, M. Daneshbastam, C. B. Zhai, Fixed points of mixed monotone operators for existence and uniqueness of nonlinear fractional differential equations, J. Contemp. Mathemat. Anal., 52 (2017), 8–13. doi: 10.3103/S1068362317010022. doi: 10.3103/S1068362317010022 |
[18] | P. Mendoza-Méndez, L. López-Flores, A. Vizcarra-Rendón, L. E. Sánchez-Díaz, M. Medina-Noyola, Generalized Langevin equation for tracer diffusion in atomic liquids, Physica A, 394 (2014), 1–16. doi: 10.1016/j.physa.2013.09.061. doi: 10.1016/j.physa.2013.09.061 |
[19] | M. Pineda, M. Stamatakis, On the stochastic modelling of surface reactions through reflected chemical Langevin equations, Comput. Chem. Eng., 117 (2018), 145–158. doi: 10.1016/j.compchemeng.2018.05.003. doi: 10.1016/j.compchemeng.2018.05.003 |
[20] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1998. |
[21] | B. K. Sahu, O. Chadli, R. N. Mohapatra, S. Pani, Existence of solutions for extended generalized complementarity problems, Positivity, 25 (2021), 769–789. doi: 10.1007/s11117-020-00786-2. doi: 10.1007/s11117-020-00786-2 |
[22] | Q. Zhang, X. M. Deng, Q. Y. Bie, Existence and uniqueness of mild solutions to the incompressible nematic liquid crystal flow, Comput. Math. Appl., 77 (2019), 2489–2498. doi: 10.1016/j.camwa.2018.12.036. doi: 10.1016/j.camwa.2018.12.036 |