Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Relative information spectra with applications to statistical inference

  • Received: 25 July 2024 Revised: 04 November 2024 Accepted: 09 December 2024 Published: 16 December 2024
  • MSC : 62B05, 62B10, 62C10, 62F03, 94A15, 94A17

  • For any pair of probability measures defined on a common space, their relative information spectra——specifically, the distribution functions of the loglikelihood ratio under either probability measure——fully encapsulate all that is relevant for distinguishing them. This paper explores the properties of the relative information spectra and their connections to various measures of discrepancy including total variation distance, relative entropy, Rényi divergence, and general f-divergences. A simple definition of sufficient statistics, termed I-sufficiency, is introduced and shown to coincide with longstanding notions under the assumptions that the data model is dominated and the observation space is standard. Additionally, a new measure of discrepancy between probability measures, the NP-divergence, is proposed and shown to determine the area of the error probability pairs achieved by the Neyman-Pearson binary hypothesis tests. For independent identically distributed data models, that area is shown to approach 1 at a rate governed by the Bhattacharyya distance.

    Citation: Sergio Verdú. Relative information spectra with applications to statistical inference[J]. AIMS Mathematics, 2024, 9(12): 35038-35090. doi: 10.3934/math.20241668

    Related Papers:

    [1] Osama Ala'yed, Belal Batiha, Diala Alghazo, Firas Ghanim . Cubic B-Spline method for the solution of the quadratic Riccati differential equation. AIMS Mathematics, 2023, 8(4): 9576-9584. doi: 10.3934/math.2023483
    [2] Azhar Iqbal, Abdullah M. Alsharif, Sahar Albosaily . Numerical study of non-linear waves for one-dimensional planar, cylindrical and spherical flow using B-spline finite element method. AIMS Mathematics, 2022, 7(8): 15417-15435. doi: 10.3934/math.2022844
    [3] Seherish Naz Khalid Ali Khan, Md Yushalify Misro . Hybrid B-spline collocation method with particle swarm optimization for solving linear differential problems. AIMS Mathematics, 2025, 10(3): 5399-5420. doi: 10.3934/math.2025249
    [4] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
    [5] Yan Wu, Chun-Gang Zhu . Generating bicubic B-spline surfaces by a sixth order PDE. AIMS Mathematics, 2021, 6(2): 1677-1694. doi: 10.3934/math.2021099
    [6] Mohammad Tamsir, Neeraj Dhiman, Deependra Nigam, Anand Chauhan . Approximation of Caputo time-fractional diffusion equation using redefined cubic exponential B-spline collocation technique. AIMS Mathematics, 2021, 6(4): 3805-3820. doi: 10.3934/math.2021226
    [7] Rabia Noureen, Muhammad Nawaz Naeem, Dumitru Baleanu, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa . Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation. AIMS Mathematics, 2023, 8(11): 25343-25370. doi: 10.3934/math.20231293
    [8] Osama Ala'yed, Ahmad Qazza, Rania Saadeh, Osama Alkhazaleh . A quintic B-spline technique for a system of Lane-Emden equations arising in theoretical physical applications. AIMS Mathematics, 2024, 9(2): 4665-4683. doi: 10.3934/math.2024225
    [9] Mostafa M. A. Khater, A. El-Sayed Ahmed . Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes. AIMS Mathematics, 2021, 6(6): 5896-5908. doi: 10.3934/math.2021349
    [10] Kai Wang, Guicang Zhang . Curve construction based on quartic Bernstein-like basis. AIMS Mathematics, 2020, 5(5): 5344-5363. doi: 10.3934/math.2020343
  • For any pair of probability measures defined on a common space, their relative information spectra——specifically, the distribution functions of the loglikelihood ratio under either probability measure——fully encapsulate all that is relevant for distinguishing them. This paper explores the properties of the relative information spectra and their connections to various measures of discrepancy including total variation distance, relative entropy, Rényi divergence, and general f-divergences. A simple definition of sufficient statistics, termed I-sufficiency, is introduced and shown to coincide with longstanding notions under the assumptions that the data model is dominated and the observation space is standard. Additionally, a new measure of discrepancy between probability measures, the NP-divergence, is proposed and shown to determine the area of the error probability pairs achieved by the Neyman-Pearson binary hypothesis tests. For independent identically distributed data models, that area is shown to approach 1 at a rate governed by the Bhattacharyya distance.



    The study of nonlinear systems of singular initial value problems has recently attracted many mathematicians and physicists [1,2,3,4,5,6,7,8,9,10,11,12]. One of the systems in this category is the following Lane-Emden system of the form:

    d2ω1(τ)dτ2+δ1τdω1(τ)dτ+1(ω1(τ),ω2(τ))=1(τ), (1)
    d2ω1(τ)dτ2+δ1τdω1(τ)dτ+1(ω1(τ),ω2(τ))=1(τ),

    subject to

    ω1(0)=ε1,ω'1(0)=0, (2)
    ω2(0)=ϑ1,ω'2(0)=0,

    where 1,2 are source functions, τ[0,1], δ1,δ2,ε1, and ϑ1 are real constants. The Lane-Emden equation, which was first investigated by astrophysicists Jonathan Homer Lane and Robert Emden, comes in various scientific applications in two kinds. For (ω(τ))=ωγ(τ), (1) is called the Lane-Emden equation of index γ, or of the first kind, that is a fundamental equation in the theory of star structure [13,14,15,16,17,18,19]. It represents the temperature variant of a spherical gas cloud subject to the principles of thermodynamics and its molecules' mutual attraction, see [20,21,22,23,24,25,26] and references therein. In astrophysics, the Lane-Emden equation represents Poisson's equation for the gravitational potential of a spherically symmetric, polytropic fluid, and self-gravitating at hydrostatic equilibrium [27]. Moreover, an important area of application for this type of equation is the study of species' diffusive transit and chemical reactions inside porous catalyst particles [27]. However, for (ω(τ))=eω(τ), (1) is called the Lane-Emden equation of the second kind that describes the dimensionless density distribution in a sphere of isothermal gas [28]. The singular behavior that arises at τ=0 is the primary difficulty of the Lane-Emden equations.

    Recently, modeling a variety of physical and chemical phenomena, including chemical reactions, population evolution, and pattern formation leads to the system of Lane-Emden equations [7]. Therefore, numerous approaches have been proposed for the solutions of scalar and system of Lane-Emden equations [1,2,10,11,12,12,13,14,15,17,18,42,43,44,45,46,47].

    Spline methods employing piecewise polynomial functions have been demonstrated to be convenient methods for obtaining numerical solutions to many challenging models in science, engineering, and mathematics due to their simplicity of implementation and efficiency [29,30,31,32,33,34]. One of the well-known spline methods is the so-called B-spline (the "B" stands for basis) functions, which were first proposed by Schoenberg in 1946. The B-spline functions [35,36] have recently been a valuable tool in numerical computation, approximation theory, and image processing as they have various useful properties such as numerical stability of computations, local effects of coefficient changes, and built-in smoothness between neighboring polynomial pieces. The degrees of B-spline and the collocation points are the main factors that play a significant role in the execution of the technique and affect the outcomes to be achieved up to a required level of accuracy.

    One of the most efficient and versatile techniques for obtaining approximate solutions is the cubic B-spline method (CBSM). The CBSM is a third-order piecewise polynomial constructed from a combination of recursive formulas referred to as the cubic B-spline basis. The derivation of the B-spline basis and the construction of the B-spline function are thoroughly discussed in [37,38]. In recent years, the CBSM has been successfully applied to various mathematical problems [39]. This demonstrates the effectiveness and usefulness of spline approaches through their numerous successful implementations. Therefore, this paper investigates the approximate solution of systems of the Lane-Emden equations using the CBSM.

    This paper is organized as follows, in the next section, we present the basic preliminaries of the method. A short summary of cubic B-Spline method is presented in Section 3. We show the convergence analysis in Section 4. Finally, we present some numerical examples in Section 5.

    In this section, we introduce some basic facts regarding cubic B-spline approximation. Assume that the interval Γ=[α,β] can be divided into k subintervals [τi,τi+1] via

    τi=α+iΛ,i=0,,k,

    where

    Λ=(βα)/k.

    The linear space of the cubic spline over the given partition is

    M3(I)={μ(τ)C2(I):μ(τ)|IiP3,i=0,...,k1},

    where μ(τ)|Ii indicates the restriction of μ(τ) to Ii and P3 indicates the set of cubic polynomials in one-variable. The dimension of linear space M3(I) is (k+3). Extend Γ=[α,β] to

    Γ=[α3Λ,β+3Λ]

    with the equidistant knots

    τi=α+iΛ,i=3,...,k+3.

    The cubic B-spline function

    Ki(τ),i=1,...,k+1,

    is given by [40]

    Ki(τ)={(ττi)36Λ3,τ[τi,τi+1],(ττi)36Λ32(ττi+1)33Λ3,τ[τi+1,τi+2],(τi+4τ)36Λ32(τi+3τ)33Λ3,τ[τi+2,τi+3],(τi+4τ)36Λ3,τ[τi+3,τi+4],0,else.

    The Ki(τ),i=1,...,k+1, form basis splines of M3(I). The values of Ki(τ),K'i(τ) and K''i(τ) at the knots are recorded in Table 1.

    Table 1.  The values of Ki(τ),K'i(τ) and K''i(τ) at the knots.
    τi1 τi τi+1 else
    Ki(τ) 16 46 16 0
    K'i(τ) 12Λ 0 12Λ 0
    K''i(τ) 1Λ2 2Λ2 1Λ2 0

     | Show Table
    DownLoad: CSV

    For a sufficiently smooth function ρ(τ), there is a unique cubic spline μ(τ)M3(I) fulfilling the interpolation conditions

    μ(τi)=ρ(τi),i=0,...,k,

    and

    μ'(α)=ρ'(α),

    such that

    μ(τ)=k+1i=1λiKi(τ), (3)

    where λi's are constants to be estimated.

    Using (3), we get

    μ(τj)=k+1i=1λiKi(τj)=λj1+4λj+λj+16, (4)
    μ'(τj)=k+1i=1λiK'i(τj)=λj+1λj12Λ, (5)
    μ''(τj)=k+1i=1λiK''i(τj)=λj12λj+λj+1Λ2. (6)

    Equations (4)–(6) are the most important relations in deriving the CBSM.

    In this section, we present the cubic B-spline method for (1) and (2). Let

    μ1(τ)=k+1i=1λiKi(τ)

    and

    μ2(τ)=k+1i=1ηiKi(τ)

    denote the approximate solutions of system (1) and (2) of ω1(τ) and ω2(τ), respectively. To overcome the singularity of (1) at τ=0, we apply the L'Hôpital's rule to the second term as τ approaches zero, to achieve

    {(1+δ1)d2ω1(τ)dτ2+1(ω1(τ),ω2(τ))=1(τ),(1+δ2)d2ω2(τ)dτ2+2(ω1(τ),ω2(τ))=2(τ),forτ=0,{d2ω1(τ)dτ2+δ1τdω1(τ)dτ+1(ω1(τ),ω2(τ))=1(τ),d2ω2(τ)dτ2+δ2τdω2(τ)dτ+2(ω1(τ),ω2(τ))=2(τ),forτ0. (7)

    By discretizing (7), we get

    {(1+δ1)d2ω1(τ0)dτ2+1(ω1(τ0),ω2(τ0))=1(τ0),(1+δ2)d2ω2(τ0)dτ2+2(ω1(τ0),ω2(τ0))=2(τ0),{d2ω1(τj)dτ2+δ1τjdω1(τj)dτ+1(ω1(τj),ω2(τj))=1(τj),d2ω2(τj)dτ2+δ2τjdω2(τj)dτ+2(ω1(τj),ω2(τj))=2(τj), (8)

    where j=1,,k. By using (2)–(5), (8) becomes

    {(1+δ1)(λ12λ0+λ1Λ2)+1(ε1,ϑ1)=1(τ0),(1+δ2)(η12η0+η1Λ2)+2(ε1,ϑ1)=2(τ0),
    {(λi12λi+λi+1Λ2)+δ1τj(λj+1λj12Λ)+1(λi1+4λi+λi+16,ηi1+4ηi+ηi+16)=1(τj),j=1,,k,(ηi12ηi+ηi+1Λ2)+δ2τj(ηj+1ηj12Λ)+2(λi1+4λi+λi+16,ηi1+4ηi+ηi+16)=2(τj),j=1,,k. (9)

    The initial conditions (2) as well provide the following four equations

    ω1(0)=ε1=λ1+4λ0+λ16, (10)
    ω'1(0)=0=λ1λ12Λ, (11)
    ω2(0)=ϑ1=η1+4η0+η16, (12)
    ω''2(0)=0=η1η12Λ. (13)

    Equations (9)–(13) give us 2(k+3) nonlinear equations with λi and ηi, i=1,,k+1 as unknowns. Upon solving this system, we determine the coefficients of

    μ1(τ)=k+1i=1λiKi(τ)

    and

    μ2(τ)=k+1i=1ηiKi(τ).

    In this section, we analyze the convergence for the proposed method. For this purpose, we assume ω1(τ),ω2(τ)C5[0,1]. From (3)–(5), we get [39]

    Λ[μ'j(τi1)+4μ'j(τi)+μ'j(τi+1)]=3[ωj(τi+1)ωj(τi1)], (14)
    Λ2μ''j(τi)=6[μj(τi+1)μj(τi)]2Λ[2μ'j(τi)+μ'j(τi+1)], (15)

    j=1,2. Using the shifting operator, E(μj(τi))=μj(τi+1), (14) may be written as

    Λ6(E1+4+E)μ'j(τi)=12(EE1)ωj(τi), (16)

    j=1,2. Since E=eΛD and Dd/dτ, one can get

    eΛD+eΛD=2k=0(ΛD)2k(2k)!,eΛDeΛD=2k=0(ΛD)2k+1(2k+1)!. (17)

    Therefore, using (17), (16) can be expressed as

    (1+13k=1(ΛD)2k(2k)!)μ'j(τi)=(k=0(ΛD)2k+1(2k+1)!)ωj(τi). (18)

    Simplifying (18) gives

    μ'j(τi)=(k=0(ΛD)2k+1(2k+1)!)(1+13k=1(ΛD)2k(2k)!)1ωj(τi) = (D+Λ2D33!+Λ4D55!+)(1(Λ2D26+Λ4D472+)+(Λ2D26+Λ4D472+)2+)ωj(τi)=D(1Λ4D4180+Λ6D61512)ωj(τi). (19)

    Therefore,

    μ'j(τi)=ω'j(τi)Λ4180ω(5)j(τi)+. (20)

    Similarly, (15) gives

    μ''j(τi)=ω''j(τi)112Λ2ω(4)j(τi)+1360Λ4ω(6)j(τi)+O(Λ6), (21)

    At this point, the error functions ej(τ),j=1,2, are stated as follows:

    e1(τi)=1(τj)d2ω1(τj)dτ2δ1τjdω1(τj)dτ1(ω1(τj),ω2(τj))=d2μ1(τj)dτ2+δ1τjdμ1(τj)dτ+1(μ1(τj),μ2(τj))d2ω1(τj)dτ2δ1τjdω1(τj)dτ1(ω1(τj),ω2(τj))=[d2μ1(τj)dτ2d2ω1(τj)dτ2]+δ1τj[dμ1(τj)dτdω1(τj)dτ],e2(τi)=2(τj)d2ω2(τj)dτ2δ2τjdω2(τj)dτ2(ω1(τj),ω2(τj))=d2μ2(τj)dτ2+δ2τjdμ2(τj)dτ+2(μ1(τj),μ2(τj))d2ω2(τj)dτ2δ2τjdω2(τj)dτ2(ω1(τj),ω2(τj))=[d2μ2(τj)dτ2d2ω2(τj)dτ2]+δ2τj[dμ2(τj)dτdω2(τj)dτ], (22)

    where j=1,...,k. Substitute (20) and (21) in (22) yields

    {‖{e}_{1}\left({\tau }_{i}\right)‖}_{{\mathrm{\infty }}} = O\left({{\mathrm{\Lambda }}}^{2}\right),
    {‖{e}_{2}\left({\tau }_{i}\right)‖}_{{\mathrm{\infty }}} = O\left({{\mathrm{\Lambda }}}^{2}\right). (23)

    For i = 0, we get

    {e}_{1}\left({\tau }_{0}\right) = {\aleph }_{1}\left({\tau }_{0}\right)-\left(1+{\delta }_{1}\right)\frac{{d}^{2}{\omega }_{1}\left({\tau }_{0}\right)}{d{\tau }^{2}}-{\hslash }_{1}\left({\omega }_{1}\left({\tau }_{0}\right),{\omega }_{2}\left({\tau }_{0}\right)\right)\\ = \left(1+{\delta }_{1}\right)\frac{{d}^{2}{\mu }_{1}\left({\tau }_{0}\right)}{d{\tau }^{2}}+{\hslash }_{1}\left({\mu }_{1}\left({\tau }_{0}\right),{\mu }_{2}\left({\tau }_{0}\right)\right)\\-\left(1+{\delta }_{1}\right)\frac{{d}^{2}{\omega }_{1}\left({\tau }_{0}\right)}{d{\tau }^{2}}-{\hslash }_{1}({\omega }_{1}\left({\tau }_{0}\right),{\omega }_{2}\left({\tau }_{0}\right)\\ = \left(1+{\delta }_{1}\right)\left[\frac{{d}^{2}{\mu }_{1}\left({\tau }_{0}\right)}{d{\tau }^{2}}-\frac{{d}^{2}{\omega }_{1}\left({\tau }_{0}\right)}{d{\tau }^{2}}\right],\\{e}_{2}\left({\tau }_{0}\right) = {\aleph }_{2}\left({\tau }_{0}\right)-(1+{\delta }_{2})\frac{{d}^{2}{\omega }_{2}\left({\tau }_{0}\right)}{d{\tau }^{2}}-{\hslash }_{2}({\omega }_{1}\left({\tau }_{0}\right),{\omega }_{2}\left({\tau }_{0}\right)) \\ = \left(1+{\delta }_{2}\right)\frac{{d}^{2}{\omega }_{2}\left({\tau }_{0}\right)}{d{\tau }^{2}}+{\hslash }_{2}\left({\mu }_{1}\left({\tau }_{0}\right),{\mu }_{2}\left({\tau }_{0}\right)\right)\\ -\left(1+{\delta }_{2}\right)\frac{{d}^{2}{\omega }_{2}\left({\tau }_{0}\right)}{d{\tau }^{2}}-{\hslash }_{1}({\omega }_{1}\left({\tau }_{0}\right),{\omega }_{2}\left({\tau }_{0}\right)\\ = (1+{\delta }_{2})\left[\frac{{d}^{2}{\omega }_{2}\left({\tau }_{0}\right)}{d{\tau }^{2}}-\frac{{d}^{2}{\omega }_{2}\left({\tau }_{0}\right)}{d{\tau }^{2}}\right]. (24)

    Using (21) in (24), we have

    {‖{e}_{1}\left({\tau }_{0}\right)‖}_{{\mathrm{\infty }}} = O\left({{\mathrm{\Lambda }}}^{2}\right),\\{‖{e}_{2}\left({\tau }_{0}\right)‖}_{{\mathrm{\infty }}} = O\left({{\mathrm{\Lambda }}}^{2}\right). (25)

    Therefore, from (23) and (25), the truncation error for the considered system is O\left({{\mathrm{\Lambda }}}^{2}\right) .

    In this section, we present the numerical solution to (1) and (2) using the cubic B-spline technique. Several problems are examined to prove the accuracy and efficiency of the proposed method using the absolute errors between the approximate solutions and the exact solutions ( \left|{e}_{j}\left(\tau \right)\right|) for various k. All the results are calculated by using MATHEMATICA 12.

    Problem 1. Consider the following system [24]

    \frac{{d}^{2}{\omega }_{1}\left(\tau \right)}{d{\tau }^{2}}+\frac{3}{\tau }\frac{d{\omega }_{1}\left(\tau \right)}{d\tau }-4({\omega }_{1}\left(\tau \right)+{\omega }_{2}\left(\tau \right)) = 0,\\\frac{{d}^{2}{\omega }_{2}\left(\tau \right)}{d{\tau }^{2}}+\frac{2}{\tau }\frac{d{\omega }_{2}\left(\tau \right)}{d\tau }+3({\omega }_{1}\left(\tau \right)+{\omega }_{2}\left(\tau \right)) = 0, (26)

    subject to

    {\omega }_{1}\left(0\right) = 1,{\omega }_{1}^{{\text{'}}}\left(0\right) = 0,\\{\omega }_{2}\left(0\right) = 1,{\omega }_{2}^{{\text{'}}}\left(0\right) = 0, (27)

    where the exact solutions are {\omega }_{1}\left(\tau \right) = 1+{\tau }^{2} and {\omega }_{2}\left(\tau \right) = 1-{\tau }^{2} . In this example, we use {\mathrm{\Lambda }} = 0.1 . The numerical results and the exact solution at the grid points are listed in Table 2. We can conclude from Table 2 that the obtained numerical results are in excellent agreement with the exact solutions. We note that for this problem, our results are exact and the achieved errors are only due to round-off calculations. The CPU time for this problem, with {\mathrm{\Lambda }} = 0.1 , is 0.0156s.

    Table 2.  Numerical results for Problem 1.
    \tau {\omega }_{1}\left(\tau \right) {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{1}\left(\tau \right)\right| {\omega }_{2}\left(\tau \right) {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{2}\left(\tau \right)\right|
    0.0 1 1 0 1 1 2.22045\times {10}^{-16}
    0.1 1.01 1.01 0 0.99 0.99 2.22045\times {10}^{-16}
    0.2 1.04 1.04 0 0.96 0.96 2.22045\times {10}^{-16}
    0.3 1.09 1.09 2.22045\times {10}^{-16} 0.91 0.91 2.22045\times {10}^{-16}
    0.4 1.16 1.16 2.22045\times {10}^{-16} 0.84 0.84 3.33067\times {10}^{-16}
    0.5 1.25 1.25 2.22045\times {10}^{-16} 0.75 0.75 3.33067\times {10}^{-16}
    0.6 1.36 1.36 4.44089\times {10}^{-16} 0.64 0.64 3.33067\times {10}^{-16}
    0.7 1.49 1.49 2.22045\times {10}^{-16} 0.51 0.51 4.44089\times {10}^{-16}
    0.8 1.61 1.61 0 0.36 0.36 4.44089\times {10}^{-16}
    0.9 1.81 1.81 2.22045\times {10}^{-16} 0.19 0.19 5.55112\times {10}^{-16}
    1.0 2 2 0 0 5.64363 \times {10}^{-16} 5.64363\times {10}^{-16}

     | Show Table
    DownLoad: CSV

    Problem 2. Consider the following system [27]

    {\omega }_{1}^{{\text{'}}{\text{'}}}\left(\tau \right)+\frac{2}{\tau }{\omega }_{1}^{{\text{'}}}\left(\tau \right)-\left(4{\tau }^{2}+6\right){\omega }_{1}\left(\tau \right)+{\omega }_{2}\left(\tau \right) = {\tau }^{4}-{\tau }^{3},\\{\omega }_{2}^{{\text{'}}{\text{'}}}\left(\tau \right)+\frac{8}{\tau }{\omega }_{2}^{{\text{'}}}\left(\tau \right)+{\omega }_{1}\left(\tau \right)+\tau {\omega }_{2}\left(\tau \right) = {e}^{{\tau }^{2}}+{\tau }^{5}-{\tau }^{4}+44{\tau }^{2}-30\tau , (28)

    subject to

    {\omega }_{1}\left(0\right) = 1,{\omega }_{1}^{{\text{'}}}\left(0\right) = 0,\\{\omega }_{2}\left(0\right) = 0,{\omega }_{2}^{{\text{'}}}\left(0\right) = 0, (29)

    where the exact solutions are

    {\omega }_{1}\left(\tau \right) = {e}^{{\tau }^{2}}

    and

    {\omega }_{2}\left(\tau \right) = {\tau }^{4}-{\tau }^{3}.

    The obtained numerical and exact solutions, with different values of {\mathrm{\Lambda }} , are depicted in Figure 1. The absolute errors between exact and numerical results, with {\mathrm{\Lambda }} = 0.1 and 0.01 , are presented in Tables 3 and 4. In Table 5, we compare the maximum absolute error of CBSM with those of [27]. Our results seem to be better than those of [27]. The CPU time for this problem, with {\mathrm{\Lambda }} = 0.1 and 0.01 , are 0.0156s and 0.0625s respectively.

    Figure 1.  Absolute error functions for Problem 2.
    Table 3.  Numerical result for approximate solution of {\omega }_{1}\left(\tau \right) in Problem 2.
    \tau {\omega }_{1}\left(\tau \right) {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{1}\left(\tau \right)\right| {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.01 ) \left|{e}_{1}\left(\tau \right)\right|
    0.0 1 1 0 1 0
    0.1 1.01005 1.01008 3.38838\times {10}^{-5} 1.01005 1.71898\times {10}^{-7}
    0.2 1.04081 1.04091 9.51843\times {10}^{-5} 1.04081 7.1747\times {10}^{-7}
    0.3 1.09417 1.09438 2.01533\times {10}^{-4} 1.09417 1.75608\times {10}^{-6}
    0.4 1.17351 1.17389 3.80997\times {10}^{-4} 1.17351 3.5098\times {10}^{-6}
    0.5 1.28403 1.2847 6.71612\times {10}^{-4} 1.28403 6.3527\times {10}^{-6}
    0.6 1.43333 1.43446 1.13524\times {10}^{-3} 1.43334 1.08922\times {10}^{-5}
    0.7 1.63232 1.63419 1.87147\times {10}^{-3} 1.63233 1.81055\times {10}^{-5}
    0.8 1.89648 1.89952 3.04087\times {10}^{-3} 1.89651 2.9567\times {10}^{-5}
    0.9 2.24791 2.25281 4.90399\times {10}^{-3} 2.24796 4.78283\times {10}^{-5}
    1.0 2.71828 2.72617 7.88713\times {10}^{-3} 2.71836 7.70601\times {10}^{-5}

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical result for approximate solution of {\omega }_{2}\left(\tau \right) in Problem 2.
    \tau {\omega }_{2}\left(\tau \right) {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{2}\left(\tau \right)\right| {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.01 ) \left|{e}_{2}\left(\tau \right)\right|
    0.0 0 5.99863\times {10}^{-31} 5.99863\times {10}^{-31} 0 0
    0.1 -0.0009 -0.000853346 4.66538\times {10}^{-5} -0.000899887 1.13186\times {10}^{-7}
    0.2 -0.0064 -0.0063379 6.21025\times {10}^{-5} -0.00639955 4.45865\times {10}^{-7}
    0.3 -0.0189 -0.0187802 1.19801\times {10}^{-4} -0.01889900 9.98298\times {10}^{-7}
    0.4 -0.0384 -0.0382022 1.97763\times {10}^{-4} -0.0383982 1.76662\times {10}^{-6}
    0.5 -0.0625 -0.0622052 2.94843\times {10}^{-4} -0.0624973 2.74383\times {10}^{-6}
    0.6 -0.0864 -0.0859881 4.11936\times {10}^{-4} -0.0863961 3.91802\times {10}^{-6}
    0.7 -0.1029 -0.102353 5.46598\times {10}^{-4} -0.102895 5.2695\times {10}^{-6}
    0.8 -0.1024 -0.101704 6.95542\times {10}^{-4} -0.102393 6.76623\times {10}^{-6}
    0.9 -0.0729 -0.0720466 8.5344\times {10}^{-4} -0.0728916 8.35631\times {10}^{-6}
    1.0 0 0.00101164 1.01164\times {10}^{-3} 9.95549\times {10}^{-6} 9.95549\times {10}^{-6}

     | Show Table
    DownLoad: CSV
    Table 5.  Comparison of maximum absolute error of Problem 2.
    {\mu }_{1}\left(\tau \right) {\mu }_{2}\left(\tau \right)
    CBSM ({\mathrm{\Lambda }}=0.1) 7.88\times {10}^{-3} 1.01\times {10}^{-3}
    CBSM ({\mathrm{\Lambda }}=0.01) 7.70\times {10}^{-5} 9.95\times {10}^{-6}
    [27] (N=5) 3.14\times {10}^{-2} 4.19\times {10}^{-5}
    [27] (N=6) 6.11\times {10}^{-4} 7.22\times {10}^{-6}

     | Show Table
    DownLoad: CSV

    Problem 3. Consider the following system [24,41]

    {\omega }_{1}^{{\text{'}}{\text{'}}}\left(\tau \right)+\frac{5}{\tau }{\omega }_{1}^{{\text{'}}}\left(\tau \right)+8({e}^{{\omega }_{1}\left(\tau \right)}+2{e}^{-\frac{{\omega }_{2}\left(\tau \right)}{2}}) = 0,\\ {\omega }_{2}^{{\text{'}}{\text{'}}}\left(\tau \right)+\frac{3}{\tau }{\omega }_{2}^{{\text{'}}}\left(\tau \right)-8({e}^{\frac{{\omega }_{1}\left(\tau \right)}{2}}+{e}^{-{\omega }_{2}\left(\tau \right)}) = 0, (30)

    subject to

    {\omega }_{1}\left(0\right) = 1-2{\mathrm{ln}}\left(2\right),{\omega }_{1}^{{\text{'}}}\left(0\right) = 0,\\{\omega }_{2}\left(0\right) = 1+2{\mathrm{ln}}\left(2\right),{\omega }_{2}^{{\text{'}}}\left(0\right) = 0, (31)

    where the exact solutions are

    {\omega }_{1}\left(\tau \right) = 1-2{\mathrm{ln}}({\tau }^{2}+2)

    and

    {\omega }_{2}\left(\tau \right) = 1+2{\mathrm{ln}}({\tau }^{2}+2).

    We depicted our numerical and exact solutions with different values of {\mathrm{\Lambda }} in Figure 2. The absolute errors between exact and numerical results are reported in Tables 6 and 7. Table 8 compares the maximum absolute error of CBSM with those of the method in [41]. It appears that our findings are superior to the outcomes presented in [41]. The CPU time for this problem, with {\mathrm{\Lambda }} = 0.1 and 0.01 , are 0.0156s and 0.0781s respectively.

    Figure 2.  Absolute error functions for Problem 3.
    Table 6.  Numerical result for approximate solution of {\omega }_{1}\left(\tau \right) in Problem 3.
    \tau {\omega }_{1}\left(\tau \right) {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{1}\left(\tau \right)\right| {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.01 ) \left|{e}_{1}\left(\tau \right)\right|
    0.0 -0.386294 -0.386294 2.22045\times {10}^{-16} -0.386294 -2.22045\times {10}^{-16}
    0.1 -0.396269 -0.396257 1.28893\times {10}^{-5} -0.396269 4.13534\times {10}^{-8}
    0.2 -0.4259 -0.425878 2.11827\times {10}^{-5} -0.425899 1.5319\times {10}^{-7}
    0.3 -0.474328 -0.474293 3.503\times {10}^{-5} -0.474328 3.07878\times {10}^{-7}
    0.4 -0.540216 -0.540166 5.02533\times {10}^{-5} -0.540216 4.67063\times {10}^{-7}
    0.5 -0.62186 -0.621799 6.18095\times {10}^{-5} -0.62186 5.91857\times {10}^{-7}
    0.6 -0.717323 -0.717256 6.68475\times {10}^{-5} -0.717323 6.51126\times {10}^{-7}
    0.7 -0.824565 -0.824502 6.3593\times {10}^{-5} -0.824565 6.26415\times {10}^{-7}
    0.8 -0.941558 -0.941506 5.16047\times {10}^{-5} -0.941557 5.13027\times {10}^{-7}
    0.9 -1.06637 -1.06634 3.15988\times {10}^{-5} -1.06637 3.18094\times {10}^{-7}
    1.0 -1.19722 -1.19722 5.10219\times {10}^{-6} -1.19722 5.69956\times {10}^{-8}

     | Show Table
    DownLoad: CSV
    Table 7.  Numerical result for approximate solution of {\omega }_{2}\left(\tau \right) in Problem 3.
    \tau {\omega }_{2}\left(\tau \right) {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{2}\left(\tau \right)\right| {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.01 ) \left|{e}_{2}\left(\tau \right)\right|
    0.0 2.38629 2.38629 2.22045\times {10}^{-16} 2.38629 2.22045\times {10}^{-16}
    0.1 2.39627 2.39625 1.47619\times {10}^{-5} 2.39627 6.20966\times {10}^{-8}
    0.2 2.4259 2.42587 3.17866\times {10}^{-5} 2.42599 2.32511\times {10}^{-7}
    0.3 2.47433 2.47427 5.42035\times {10}^{-5} 2.47433 4.75075\times {10}^{-7}
    0.4 2.54022 2.54014 7.94034\times {10}^{-5} 2.54022 7.3881\times {10}^{-7}
    0.5 2.62186 2.62176 1.01507\times {10}^{-4} 2.62186 9.70554\times {10}^{-7}
    0.6 2.71732 2.71721 1.16022\times {10}^{-4} 2.71732 1.12546\times {10}^{-6}
    0.7 2.82457 2.82445 1.1998\times {10}^{-4} 2.82456 1.17361\times {10}^{-6}
    0.8 2.94156 2.94145 1.121\times {10}^{-4} 2.94156 1.10206\times {10}^{-6}
    0.9 3.06637 3.06628 9.26097\times {10}^{-5} 3.06637 9.13128\times {10}^{-7}
    1.0 3.19722 3.19716 6.2868\times {10}^{-5} 3.19722 6.20546\times {10}^{-7}

     | Show Table
    DownLoad: CSV
    Table 8.  Comparison of maximum absolute error of Problem 3.
    {\mu }_{1}\left(\tau \right) {\mu }_{2}\left(\tau \right)
    CBSM ({\mathrm{\Lambda }}=0.1) 6.68\times {10}^{-5} 1.19\times {10}^{-4}
    CBSM ({\mathrm{\Lambda }}=0.01) 6.51\times {10}^{-7} 1.17\times {10}^{-6}
    [41] (j=3) 1.47\times {10}^{-3} 1.64\times {10}^{-3}
    [41] (j=4) 3.67\times {10}^{-4} 4.10\times {10}^{-4}

     | Show Table
    DownLoad: CSV

    Problem 4. Consider the following system of LEE [24,27,40,41]

    {\omega }_{1}^{{\text{'}}{\text{'}}}\left(\tau \right)+\frac{1}{\tau }{\omega }_{1}^{{\text{'}}}\left(\tau \right)-{\omega }_{2}^{3}\left(\tau \right)({\omega }_{1}^{2}+1) = 0,\\{\omega }_{2}^{{\text{'}}{\text{'}}}\left(\tau \right)+\frac{3}{\tau }{\omega }_{2}^{{\text{'}}}\left(\tau \right)+{\omega }_{2}^{5}\left(\tau \right)({\omega }_{1}^{2}+3) = 0, (32)

    subject to

    {\omega }_{1}\left(0\right) = 1,{{\omega }^{{\text{'}}}}_{1}\left(0\right) = 0,\\{\omega }_{2}\left(0\right) = 1,{{\omega }^{{\text{'}}}}_{2}\left(0\right) = 0, (33)

    where the exact solutions are

    {\omega }_{1}\left(\tau \right) = \sqrt{{1+\tau }^{2}}

    and

    {\omega }_{2}\left(\tau \right) = \frac{1}{\sqrt{{1+\tau }^{2}}}.

    The achieved numerical results with {\mathrm{\Lambda }} = 0.1 and 0.01 are exposed in Tables 9 and 10. Table 11 shows a comparison between the maximum absolute error of CBSM and that of the approaches discussed in [27,40,41]. Based on the results, it seems that our research outperforms the results reported in [27,40,41]. Absolute errors for different values of {\mathrm{\Lambda }} are exposed in Figure 3. The CPU time for this problem, with {\mathrm{\Lambda }} = 0.1 and 0.01 , are 0.0156s and 0.0781s respectively.

    Table 9.  Numerical result for approximate solution of {\omega }_{1}\left(\tau \right) in Problem 4.
    \tau {\omega }_{1}\left(\tau \right) {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{1}\left(\tau \right)\right| {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.01 ) \left|{e}_{1}\left(\tau \right)\right|
    0.0 1 1 0 1 0
    0.1 1.004988 1.004978 9.41481\times {10}^{-6} 1.004987 6.21775\times {10}^{-8}
    0.2 1.019804 1.019776 2.80913\times {10}^{-5} 1.019804 2.29506\times {10}^{-7}
    0.3 1.044031 1.043979 5.15984\times {10}^{-5} 1.04403 4.61458\times {10}^{-7}
    0.4 1.077033 1.076957 7.60906\times {10}^{-5} 1.077032 7.07716\times {10}^{-7}
    0.5 1.118034 1.117936 9.76652\times {10}^{-5} 1.118033 9.25606\times {10}^{-7}
    0.6 1.16619 1.166076 1.13971\times {10}^{-4} 1.166189 1.09013\times {10}^{-6}
    0.7 1.220656 1.220531 1.24491\times {10}^{-4} 1.220654 1.19564\times {10}^{-6}
    0.8 1.280625 1.280495 1.30176\times {10}^{-4} 1.280624 1.25163\times {10}^{-6}
    0.9 1.345362 1.34523 1.32854\times {10}^{-4} 1.345361 1.27653\times {10}^{-6}
    1.0 1.414214 1.414079 1.34662\times {10}^{-4} 1.414212 1.29187\times {10}^{-6}

     | Show Table
    DownLoad: CSV
    Table 10.  Numerical result for approximate solution of {\omega }_{2}\left(\tau \right) in Problem 4.
    \tau {\omega }_{2}\left(\tau \right) {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{2}\left(\tau \right)\right| {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.01 ) \left|{e}_{2}\left(\tau \right)\right|
    0.0 1 1 0 1 2.22045\times {10}^{-16}
    0.1 0.995037 0.995059 2.1554\times {10}^{-5} 0.995037 9.03189\times {10}^{-8}
    0.2 0.980581 0.980623 4.20048\times {10}^{-5} 0.980581 3.08008\times {10}^{-7}
    0.3 0.957826 0.957887 6.03609\times {10}^{-5} 0.957827 5.34936\times {10}^{-7}
    0.4 0.928477 0.928545 6.87324\times {10}^{-5} 0.928477 6.48155\times {10}^{-7}
    0.5 0.894427 0.894487 5.93414\times {10}^{-5} 0.894428 5.76216\times {10}^{-7}
    0.6 0.857493 0.857525 3.17569\times {10}^{-5} 0.857493 3.15637\times {10}^{-7}
    0.7 0.819232 0.819223 9.41889\times {10}^{-6} 0.819232 8.61722\times {10}^{-8}
    0.8 0.780869 0.780811 5.74405\times {10}^{-5} 0.780868 5.60283\times {10}^{-7}
    0.9 0.743294 0.743188 1.05817\times {10}^{-4} 0.743293 1.04065\times {10}^{-6}
    1.0 0.707107 0.706957 1.4962\times {10}^{-4} 0.707105 1.4772\times {10}^{-6}

     | Show Table
    DownLoad: CSV
    Table 11.  Comparison of maximum absolute error of Problem 4.
    {\mu }_{1}\left(\tau \right) {\mu }_{2}\left(\tau \right)
    CBSM ({\mathrm{\Lambda }}=0.1) 1.34\times {10}^{-4} 1.49\times {10}^{-4}
    CBSM ({\mathrm{\Lambda }}=0.01) 1.29\times {10}^{-6} 1.47\times {10}^{-6}
    [27] (N=4) 6.44\times {10}^{-4} 8.87\times {10}^{-4}
    [27] (N=5) 7.46\times {10}^{-5} 6.08\times {10}^{-5}
    [40] (n=4) 4.86\times {10}^{-4} 1.45\times {10}^{-3}
    [41] (j=3) 2.76\times {10}^{-5} 1.31\times {10}^{-4}
    [41] (j=4) 6.87\times {10}^{-6} 3.28\times {10}^{-5}

     | Show Table
    DownLoad: CSV
    Figure 3.  Absolute error functions for Problem 4.

    Problem 5. Consider the following system of LEE [24,40]

    {\omega }_{1}^{{\text{'}}{\text{'}}}+\frac{8}{\tau }{\omega }_{1}^{{\text{'}}}\left(\tau \right)+(18{\omega }_{1}\left(\tau \right)-4{\omega }_{1}\left(\tau \right){\mathrm{ln}}{\omega }_{2}\left(\tau \right)) = 0,\\{\omega }_{2}^{{\text{'}}{\text{'}}}\left(\tau \right)+\frac{4}{\tau }{\omega }_{2}^{{\text{'}}}\left(\tau \right)+(4{\omega }_{2}\left(\tau \right){\mathrm{ln}}{\omega }_{1}\left(\tau \right)-10{\omega }_{2}\left(\tau \right)) = 0, (34)

    subject to

    {\omega }_{1}\left(0\right) = 1,{\omega }_{1}^{{\text{'}}}\left(0\right) = 0, \\ {\omega }_{2}\left(0\right) = 1,{\omega }_{2}^{{\text{'}}}\left(0\right) = 0, (35)

    where the exact solutions are {\omega }_{1}\left(\tau \right) = {e}^{-{\tau }^{2}} and {\omega }_{2}\left(\tau \right) = {e}^{{\tau }^{2}} .

    Figure 4 represents the plot of our numerical and exact solutions for Problem 5 with different values of {\mathrm{\Lambda }} . The absolute errors for {\mathrm{\Lambda }} = 0.1 and 0.01 are presented in Tables 12 and 13. Table 14 displays a comparison between the maximum absolute error of CBSM and that of the approaches discussed in [40,41]. Our results indicate that they are better than the results reported in [40,41]. The CPU time for this problem, with {\mathrm{\Lambda }} = 0.1 and 0.01 , are 0.0156s and 0.0625s respectively. From all these tables and figures, we can observe that our numerical results are in good agreement with the exact ones. Moreover, it appears from our findings that the cubic B-spline method exhibits more accurate results than some existing methods.

    Figure 4.  Absolute error functions for Problem 5.
    Table 12.  Numerical result for approximate solution of {\omega }_{1}\left(\tau \right) in Problem 5.
    \tau {\omega }_{1}\left(\tau \right) {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{1}\left(\tau \right)\right| {\mu }_{1}\left(\tau \right) ( {\mathrm{\Lambda }}=0.01 ) \left|{e}_{1}\left(\tau \right)\right|
    0.0 1 1 0 1 0
    0.1 0.99005 0.990073 2.29673\times {10}^{-5} 0.99005 5.53154\times {10}^{-8}
    0.2 0.960789 0.960817 2.7658"\times {10}^{-5} 0.96079 2.03451\times {10}^{-7}
    0.3 0.913931 0.913979 4.76609\times {10}^{-5} 0.913932 4.05169\times {10}^{-7}
    0.4 0.852144 0.85221 6.64108\times {10}^{-5} 0.852144 6.04412\times {10}^{-7}
    0.5 0.778801 0.778879 7.81482\times {10}^{-5} 0.778802 7.42993\times {10}^{-7}
    0.6 0.697676 0.697756 7.9594\times {10}^{-5} 0.697677 7.74528\times {10}^{-7}
    0.7 0.612626 0.612695 6.83427\times {10}^{-5} 0.612627 6.75274\times {10}^{-7}
    0.8 0.527292 0.527337 4.49264\times {10}^{-5} 0.527293 4.49447\times {10}^{-7}
    0.9 0.444858 0.444871 1.24858\times {10}^{-5} 0.444858 1.28099\times {10}^{-7}
    1.0 0.367879 0.367856 2.39084\times {10}^{-5} 0.367879 2.37741\times {10}^{-7}

     | Show Table
    DownLoad: CSV
    Table 13.  Numerical result for approximate solution of {\omega }_{2}\left(\tau \right) in Problem 5.
    \tau {\omega }_{2}\left(\tau \right) {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.1 ) \left|{e}_{2}\left(\tau \right)\right| {\mu }_{2}\left(\tau \right) ( {\mathrm{\Lambda }}=0.01 ) \left|{e}_{2}\left(\tau \right)\right|
    0.0 1 1 0 1 0
    0.1 1.01005 1.010078 2.82181\times {10}^{-5} 1.01005 1.0345\times {10}^{-7}
    0.2 1.040811 1.040871 6.04278\times {10}^{-5} 1.040811 4.35512\times {10}^{-7}
    0.3 1.094174 1.094299 1.24976\times {10}^{-4} 1.094175 1.0806\times {10}^{-6}
    0.4 1.173511 1.173751 2.40286\times {10}^{-4} 1.173513 2.19844\times {10}^{-6}
    0.5 1.284025 1.284458 4.32197\times {10}^{-4} 1.284029 4.06313\times {10}^{-6}
    0.6 1.433329 1.434077 7.47197\times {10}^{-4} 1.433337 7.12898\times {10}^{-6}
    0.7 1.632316 1.633578 1.26164\times {10}^{-3} 1.632328 1.21425\times {10}^{-5}
    0.8 1.896481 1.898582 2.1011\times {10}^{-3} 1.896501 1.21425\times {10}^{-5}
    0.9 2.247908 2.251381 3.47326\times {10}^{-3} 2.247942 3.3724\times {10}^{-5}
    1.0 2.718282 2.724006 5.72394\times {10}^{-3} 2.718338 5.56973\times {10}^{-5}

     | Show Table
    DownLoad: CSV
    Table 14.  Comparison of maximum absolute error of Problem 5.
    {\mu }_{1}\left(\tau \right) {\mu }_{2}\left(\tau \right)
    CBSM ({\mathrm{\Lambda }}=0.1) 7.95\times {10}^{-5} 5.72\times {10}^{-3}
    CBSM ({\mathrm{\Lambda }}=0.01) 7.74\times {10}^{-7} 5.56\times {10}^{-5}
    [40] (n=4) 2.99\times {10}^{-3} 9.00\times {10}^{-3}
    [41] (j=3) 4.54\times {10}^{-4} 5.05\times {10}^{-4}
    [41] (j=4) 1.88\times {10}^{-4} 1.26\times {10}^{-4}

     | Show Table
    DownLoad: CSV

    The system of Lane-Emden type equations describes a variety of phenomena in theoretical physics, star structure, and astrophysics. In this study, we introduce and examine the use of the cubic B-spline method for studying the solution of singular and nonlinear systems of Lane-Emden equations. To address the singularity that occurs at τ = 0, we use L'Hôpital's rule. We also evaluate the accuracy and validity of the proposed technique, demonstrating its success in solving the considered system. The presented test problems have shown the simplicity and applicability of the proposed method. We provide tabular and graphical representations to confirm its effectiveness, observing that our numerical solutions are in good agreement with the exact solutions. It is observed that our numerical solutions are in good agreement with the exact ones. Furthermore, we show that by decreasing the mesh size, the numerical results converge to the analytical solution, which confirms the convergence of the algorithm. It is noteworthy that the CPU time of the proposed method for each evaluated problem is under 1 second.

    The authors express their gratitude to the dear referees, who wish to remain anonymous and the editor for their helpful suggestions, which improved the final version of this paper.

    The authors declare no conflicts of interest.



    [1] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [2] S. Kullback, R. A. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79–86. https://doi.org/10.1214/aoms/1177729694 doi: 10.1214/aoms/1177729694
    [3] P. R. Halmos, L. J. Savage, Application of the Radon-Nikodym theorem to the theory of sufficient statistics, Ann. Math. Stat., 20 (1949), 225–241. https://doi.org/10.1214/aoms/1177730032 doi: 10.1214/aoms/1177730032
    [4] R. M. Fano, Class notes for course 6.574: Statistical theory of information, Massachusetts Institute of Technology, Cambridge, Mass., 1953.
    [5] D. V. Lindley, On a measure of the information provided by an experiment, Ann. Math. Stat., 27 (1956), 986–1005. https://doi.org/10.1214/aoms/1177728069 doi: 10.1214/aoms/1177728069
    [6] H. Chernoff, Large-sample theory: Parametric case, Ann. Math. Stat., 27 (1956), 1–22. Available from: https://www.jstor.org/stable/2236974.
    [7] J. Neyman, E. S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Philos. T. Roy. Soc. London Ser. A, 231 (1933), 289–337. https://doi.org/10.1098/rsta.1933.0009 doi: 10.1098/rsta.1933.0009
    [8] I. N. Sanov, On the probability of large deviations of random variables, Mat. Sb., 42 (1957), 11–44. https://doi.org/10.2307/3197345 doi: 10.2307/3197345
    [9] H. Cramér, Sur un nouveau théorème-limite de la théorie des probabilités, Actual. Sci. Ind., 736 (1938), 5–23.
    [10] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. Ser. II, 106 (1957), 620–630. https://doi.org/10.1103/PhysRev.106.620 doi: 10.1103/PhysRev.106.620
    [11] E. T. Jaynes, Information theory and statistical mechanics Ⅱ, Phys. Rev. Ser. II, 108 (1957), 171–190. https://doi.org/10.1103/PhysRev.108.171 doi: 10.1103/PhysRev.108.171
    [12] S. Kullback, Information theory and statistics, Dover: New York, 1968.
    [13] A. Rényi, On measures of information and entropy, In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press: Berkeley, California, 1961,547–561.
    [14] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat., 23 (1952), 493–507. https://doi.org/10.1214/aoms/1177729330 doi: 10.1214/aoms/1177729330
    [15] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., 2 (1967), 299–318. https://doi.org/10.1016/S0010-8545(00)80126-5 doi: 10.1016/S0010-8545(00)80126-5
    [16] K. Pearson, On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, London Edinb. Dublin Philos. Mag. J. Sci., 50 (1900), 157–175. https://doi.org/10.1080/14786440009463897 doi: 10.1080/14786440009463897
    [17] H. Jeffreys, An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. London Ser. A Math. Phys. Sci., 186 (1946), 453–461. https://doi.org/10.1098/rspa.1946.0056 doi: 10.1098/rspa.1946.0056
    [18] I. Vincze, On the concept and measure of information contained in an observation, In: Contributions to Probability: A Collection of Papers Dedicated to Eugene Lukacs, Academic Press: New York, 1981,207–214. https://doi.org/10.1016/0091-3057(81)90179-9
    [19] L. Le Cam, Asymptotic methods in statistical decision theory, Springer: New York, 1986.
    [20] M. H. DeGroot, Uncertainty, information, and sequential experiments, Ann. Math. Stat., 33 (1962), 404–419. https://doi.org/10.1214/aoms/1177704567
    [21] T. S. Han, S. Verdú, Approximation theory of output statistics, IEEE T. Inform. Theory, 39 (1993), 752–772. https://doi.org/10.1109/18.256486 doi: 10.1109/18.256486
    [22] T. S. Han, Information spectrum methods in information theory, Springer: Heidelberg, Germany, 2003.
    [23] Y. Polyanskiy, H. V. Poor, S. Verdú, Channel coding rate in the finite blocklength regime, IEEE T. Inform. Theory, 56 (2010), 2307–2359. https://doi.org/10.1109/TIT.2010.2043769 doi: 10.1109/TIT.2010.2043769
    [24] S. Verdú, The Cauchy distribution in information theory, Entropy, 25 (2023), 1–48. https://doi.org/10.3390/e25010048 doi: 10.3390/e25010048
    [25] D. Burkholder, Sufficiency in the undominated case, Ann. Math. Stat., 32 (1961), 1191–1200. https://doi.org/10.1214/aoms/1177704859 doi: 10.1214/aoms/1177704859
    [26] P. R. Halmos, Measure theory, Springer: New York, 1974.
    [27] P. Billingsley, Probability and measure, 4 Eds., Wiley-Interscience: New York, 2012.
    [28] I. Csiszár, J. Körner, Information theory: Coding theorems for discrete memoryless systems, Academic: New York, 1981.
    [29] J. Bhattacharyya, On some analogues of the amount of information and their use in statistical estimation, Sankhyā Indian J. Stat., 8 (1946), 1–14.
    [30] T. van Erven, P. Harremoës, Rényi divergence and Kullback-Leibler divergence, IEEE T. Inform. Theory, 60 (2014), 3797–3820. https://doi.org/10.1109/TIT.2014.2320500 doi: 10.1109/TIT.2014.2320500
    [31] A. Rényi, New version of the probabilistic generalization of the large sieve, Acta Math. Hung., 10 (1959), 217–226. https://doi.org/10.1007/BF02063300 doi: 10.1007/BF02063300
    [32] I. Csiszár, Eine Informationstheorische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Publ. Math. Inst. Hung. Acad. Sci., 8 (1963), 85–108. https://real.mtak.hu/201426/ doi: https://real.mtak.hu/201426/
    [33] S. M. Ali, S. D. Silvey, A general class of coefficients of divergence of one distribution from another, J. Roy. Stat. Soc. Ser. B, 28 (1966), 131–142. https://doi.org/10.2307/4441277 doi: 10.2307/4441277
    [34] I. Sason, On f-divergences: Integral representations, local behavior, and inequalities, Entropy, 20 (2018), 1–32. https://doi.org/10.3390/e20010032 doi: 10.3390/e20010032
    [35] F. Liese, I. Vajda, f-divergences: Sufficiency, deficiency and testing of hypotheses, In: Advances in Inequalities from Probability Theory and Statistics, Nova Science: New York, 2008,113–158.
    [36] I. Sason, S. Verdú, f-divergence inequalities, IEEE T. Inform. Theory, 62 (2016), 5973–6006. https://doi.org/10.1109/TIT.2016.2603151 doi: 10.1109/TIT.2016.2603151
    [37] S. Vajda, Theory of statistical inference and information, Kluwer: Dordrecht, The Netherlands, 1989.
    [38] I. Csiszár, Information measures: A critical survey, In: Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1974, 73–86. https://doi.org/10.1111/j.1559-3584.1974.tb03703.x
    [39] F. Oesterreicher, I. Vajda, Statistical information and discrimination, IEEE T. Inform. Theory, 39 (1993), 1036–1039. https://doi.org/10.1109/18.256536 doi: 10.1109/18.256536
    [40] F. Liese, I. Vajda, On divergences and informations in statistics and information theory, IEEE T. Inform. Theory, 52 (2006), 4394–4412. https://doi.org/10.1109/TIT.2006.881731 doi: 10.1109/TIT.2006.881731
    [41] F. Liese, \phi-divergences, sufficiency, Bayes sufficiency, and deficiency, Kybernetika, 48 (2012), 690–713. Available from: https://www.kybernetika.cz/content/2012/4/690.
    [42] S. Verdú, Total variation distance and the distribution of relative information, In: Proceedings of the 2014 Workshop on Information Theory and Applications, University of California: La Jolla, California, 2014.
    [43] A. Kontorovich, Obtaining measure concentration from Markov contraction, Markov Process. Relat., 18 (2012), 613–638.
    [44] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Stat., 36 (1965), 423–439. https://doi.org/10.1214/aoms/1177700153 doi: 10.1214/aoms/1177700153
    [45] R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Theor. Probab. Appl., 15 (1970), 458–486. https://doi.org/10.1137/1115049 doi: 10.1137/1115049
    [46] Y. Polyanskiy, S. Verdú, Arimoto channel coding converse and Rényi divergence, In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing, University of Illinois: Monticello, Illinois, 2010, 1327–1333.
    [47] R. A. Fisher, On the mathematical foundations of theoretical statistics, Proc. Roy. Soc. London Ser. A Math. Phys. Sci., 222 (1922), 309–368. https://doi.org/10.1098/rsta.1922.0009 doi: 10.1098/rsta.1922.0009
    [48] D. Blackwell, Equivalent comparisons of experiments, Ann. Math. Stat., 24 (1953), 265–272. https://doi.org/10.1214/aoms/1177729032 doi: 10.1214/aoms/1177729032
    [49] R. R. Bahadur, Sufficiency and statistical decision functions, Ann. Math. Stat., 25 (1954), 423–462. https://doi.org/10.1214/aoms/1177728715 doi: 10.1214/aoms/1177728715
    [50] D. Blackwell, R. V. Ramamoorthi, A Bayes but not classically sufficient statistic, Ann. Stat., 10 (1982), 1025–1026. https://doi.org/10.1016/0305-750X(82)90014-6 doi: 10.1016/0305-750X(82)90014-6
    [51] J. Dieudonné, Sur le théoréme de Lebesgue-Nikodym, Ann. Math., 42 (1941), 547–555. https://doi.org/10.1016/S0002-9378(16)40717-9 doi: 10.1016/S0002-9378(16)40717-9
    [52] H. Heyer, Theory of statistical experiments, Springer: New York, 1982.
    [53] J. Neyman, Su un teorema concernente le cosiddette statistiche sufficienti, Istituto Italiano degli Attuari, 6 (1935), 320–334.
    [54] T. P. Speed, A note on pairwise sufficiency and completions, Sankhyā Indian J. Stat. Ser. A, 38 (1976), 194–196.
    [55] A. N. Kolmogorov, Definition of center of dispersion and measure of accuracy from a finite number of observations, Izv. Akad. Nauk SSSR Ser. Mat., 6 (1942), 4–32.
    [56] T. M. Cover, J. A. Thomas, Elements of information theory, 2 Eds., Wiley: New York, 2006.
    [57] D. Blackwell, Comparison of experiments, In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press: Berkeley, California, 18 (1951), 93–102. https://doi.org/10.2307/1438094
    [58] R. D. Reiss, Approximate distributions of order statistics: With applications to nonparametric statistics, Springer: New York, 2012.
    [59] H. Strasser, Mathematical theory of statistics: Statistical experiments and asymptotic decision theory, Walter de Gruyter: Berlin, 1985.
    [60] R. R. Bahadur, A characterization of sufficiency, Ann. Math. Stat., 26 (1955), 286–293. https://doi.org/10.1214/aoms/1177728545 doi: 10.1214/aoms/1177728545
    [61] J. Pfanzagl, A characterization of sufficiency by power functions, Metrika, 21 (1974), 197–199. https://doi.org/10.1080/0156655740210307 doi: 10.1080/0156655740210307
    [62] H. L. van Trees, Detection, estimation and modulation theory. 1. Detection, estimation and linear modulation theory, John Wiley, 1968.
    [63] D. J. Hand, R. J. Till, A simple generalisation of the area under the ROC curve for multiple class classification problems, Mach. Learn., 45 (2001), 171–186. https://doi.org/10.1023/A:1010920819831 doi: 10.1023/A:1010920819831
    [64] T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett., 27 (2006), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010 doi: 10.1016/j.patrec.2005.10.010
  • This article has been cited by:

    1. Osama Ala'yed, Ahmad Qazza, Rania Saadeh, Osama Alkhazaleh, A quintic B-spline technique for a system of Lane-Emden equations arising in theoretical physical applications, 2024, 9, 2473-6988, 4665, 10.3934/math.2024225
    2. Oday Hazaimah, Polytropic Dynamical Systems with Time Singularity, 2024, 2581-8147, 721, 10.34198/ejms.14424.721746
    3. Ahmad El-Ajou, Mohammed Shqair, Ibrahim Ghabar, Aliaa Burqan, Rania Saadeh, A solution for the neutron diffusion equation in the spherical and hemispherical reactors using the residual power series, 2023, 11, 2296-424X, 10.3389/fphy.2023.1229142
    4. Richard Olu Awonusika, Oluwaseun Biodun Onuoha, Analytical method for systems of nonlinear singular boundary value problems, 2024, 11, 26668181, 100762, 10.1016/j.padiff.2024.100762
    5. Ajjanna Roja, Rania Saadeh, Raman Kumar, Ahmad Qazza, Umair Khan, Anuar Ishak, El-Sayed M. Sherif, Ioan Pop, Ramification of Hall effects in a non-Newtonian model past an inclined microchannel with slip and convective boundary conditions, 2024, 34, 1617-8106, 10.1515/arh-2024-0010
    6. Saeid Abbasbandy, A hybrid quantum-spectral-successive linearization method for general Lane–Emden type equations, 2024, 1598-5865, 10.1007/s12190-024-02290-2
    7. Rania Saadeh, Iqbal M. Batiha, Ahmad Qazza, Iqbal H. Jebri, Ali Elrashidi, Shaher Momani, 2024, Controlling DC Motor Speed with FoPID-Controllers, 979-8-3315-4001-2, 1, 10.1109/ACIT62805.2024.10877226
    8. Ahmad Qazza, Issam Bendib, Raed Hatamleh, Rania Saadeh, Adel Ouannas, Dynamics of the Gierer–Meinhardt reaction–diffusion system: Insights into finite-time stability and control strategies, 2025, 14, 26668181, 101142, 10.1016/j.padiff.2025.101142
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(678) PDF downloads(183) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog