In the present study, we introduce a collocation approach utilizing quintic B-spline functions as bases for solving systems of Lane Emden equations which have various applications in theoretical physics and astrophysics. The method derives a solution for the provided system by converting it into a set of algebraic equations with unknown coefficients, which can be easily solved to determine these coefficients. Examining the convergence theory of the proposed method reveals that it yields a fourth-order convergent approximation. It is confirmed that the outcomes are consistent with the theoretical investigation. Tables and graphs illustrate the proficiency and consistency of the proposed method. Findings validate that the newly employed method is more accurate and effective than other approaches found in the literature. All calculations have been performed using Mathematica software.
Citation: Osama Ala'yed, Ahmad Qazza, Rania Saadeh, Osama Alkhazaleh. A quintic B-spline technique for a system of Lane-Emden equations arising in theoretical physical applications[J]. AIMS Mathematics, 2024, 9(2): 4665-4683. doi: 10.3934/math.2024225
In the present study, we introduce a collocation approach utilizing quintic B-spline functions as bases for solving systems of Lane Emden equations which have various applications in theoretical physics and astrophysics. The method derives a solution for the provided system by converting it into a set of algebraic equations with unknown coefficients, which can be easily solved to determine these coefficients. Examining the convergence theory of the proposed method reveals that it yields a fourth-order convergent approximation. It is confirmed that the outcomes are consistent with the theoretical investigation. Tables and graphs illustrate the proficiency and consistency of the proposed method. Findings validate that the newly employed method is more accurate and effective than other approaches found in the literature. All calculations have been performed using Mathematica software.
[1] | B. Căruntu, C. Bota, Approximate polynomial solutions of the nonlinear Lane-Emden type equations arising in astrophysics using the squared remainder minimization method, Comput. Phys. Commun., 184 (2013), 1643–1648. https://doi.org/10.1016/j.cpc.2013.01.023 doi: 10.1016/j.cpc.2013.01.023 |
[2] | Y. Öztürk, M. Gülsu, An operational matrix method for solving Lane-Emden equations arising in astrophysics, Math. Methods Appl. Sci., 37 (2013), 2227–2235. https://doi.org/10.1002/mma.2969 doi: 10.1002/mma.2969 |
[3] | A. M. Wazwaz, R. Rach, J. S. Duan, A study on the systems of the Volterra integral forms of the Lane-Emden equations by the Adomian decomposition method, Math. Methods Appl. Sci., 37 (2013), 10–19. https://doi.org/10.1002/mma.2969 doi: 10.1002/mma.2969 |
[4] | Y. Öztürk, An efficient numerical algorithm for solving system of Lane-Emden type equations arising in engineering, Nonlinear Eng., 8 (2019), 429–437. https://doi.org/10.1515/nleng-2018-0062 doi: 10.1515/nleng-2018-0062 |
[5] | S. Kumbinarasaiah, G. Manohara, G. Hariharan, Bernoulli wavelets functional matrix technique for a system of nonlinear singular Lane Emden equations, Math Comput Simul., 204 (2023), 133–165. https://doi.org/10.1016/j.matcom.2022.07.024 doi: 10.1016/j.matcom.2022.07.024 |
[6] | AK Verma, N. Kumar, D. Tiwari, Haar wavelets collocation method for a system of nonlinear singular differential equations, Eng. Comput., 38 (2021), 659–698. https://doi.org/10.1108/EC-04-2020-0181 doi: 10.1108/EC-04-2020-0181 |
[7] | R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004 |
[8] | O. Ala'yed, R. Saadeh, A. Qazza, Numerical solution for the system of Lane-Emden type equations using cubic B-spline method arising in engineering, AIMS Math., 8 (2023), 14747–14766. https://doi.org/10.3934/math.2023754 doi: 10.3934/math.2023754 |
[9] | P. Roul, K. Thula, A fourth-order B-spline collocation method and its error analysis for Bratu-type and Lane-Emden problems, Int. J. Comput. Math., 96 (2019), 85–104. https://doi.org/10.1080/00207160.2017.1417592 doi: 10.1080/00207160.2017.1417592 |
[10] | P. Roul, K. Thula, R. Agarwal, Non-optimal fourth-order and optimal sixth-order B-spline collocation methods for Lane-Emden boundary value problems, Appl. Numer. Math., 145 (2019), 342–360. |
[11] | E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms, 12 (2023), 111. https://doi.org/10.3390/axioms12020111 doi: 10.3390/axioms12020111 |
[12] | Y. Öztürk, Solution for the system of Lane-Emden type equations using Chebyshev polynomials, Mathematics, 6 (2018), 181. https://doi.org/10.3390/math6100181 doi: 10.3390/math6100181 |
[13] | M. Izadi, A discontinuous finite element approximation to singular Lane-Emden type equations, Appl. Math. Comput., 401 (2021), 126115. https://doi.org/10.1016/j.amc.2021.126115 doi: 10.1016/j.amc.2021.126115 |
[14] | J. Shahni, R. Singh, Numerical solution of system of Emden-Fowler type equations by Bernstein collocation method, J Math Chem., 59 (2021), 1117–1138. https://doi.org/10.1007/s10910-021-01235-5 doi: 10.1007/s10910-021-01235-5 |
[15] | M. Izadi, H. M. Srivastava, An efficient approximation technique applied to a non-linear Lane-Emden pantograph delay differential model, Appl. Math. Comput., 401 (2021), 126123. https://doi.org/10.1016/j.amc.2021.126123 doi: 10.1016/j.amc.2021.126123 |
[16] | M. Abdelhakem, M. Fawzy, M. El-Kady, H. Moussa, Legendre polynomials' second derivative tau method for solving Lane-Emden and Ricatti equations, Appl. Math. Inf. Sci., 17 (2023), 437–445. https://doi.org//10.18576/amis/170305 |
[17] | M. Abdelhakem, M. Fawzy, M. El-Kady, H. Moussa, An efficient technique for approximated BVPs via the second derivative Legendre polynomials pseudo-Galerkin method: certain types of applications, Results Phys., 43 (2022), 106067. https://doi.org/10.1016/j.rinp.2022.106067 doi: 10.1016/j.rinp.2022.106067 |
[18] | M. Abdelhakem, H. Moussa, Pseudo-spectral matrices as a numerical tool for dealing BVPs, based on Legendre polynomials' derivatives, Alex. Eng. J., 66 (2023), 301–313. https://doi.org/10.1016/j.aej.2022.11.006 doi: 10.1016/j.aej.2022.11.006 |
[19] | M. Abdelhakem, Shifted Legendre fractional pseudo-spectral integration matrices for solving fractional Volterra integro-differential equations and Abel's integral equations, Fractals, 2023 (2023), 2340190. https://doi.org/10.1142/S0218348X23401904 doi: 10.1142/S0218348X23401904 |
[20] | D. Abdelhamid, W. Albalawi, K. S. Nisar, A. Abdel-Aty, S. Alsaeed, M. Abdelhakem, Mixed Chebyshev and Legendre polynomials differentiation matrices for solving initial-boundary value problems, AIMS Math., 8 (2023), 24609–24631. https://doi.org/10.3934/math.20231255 doi: 10.3934/math.20231255 |
[21] | D. Abdelhamied, M. Abdelhakem, M. El-Kady, Y. H. Youssri, Adapted shifted Chebyshev operational matrix of derivatives: two algorithms for solving even-order BVPs, Appl. Math. Inf. Sci., 17 (2023), 505–511. https://doi.org/10.18576/amis/170318 doi: 10.18576/amis/170318 |
[22] | O. Ala'yed, B. Batiha, D. Alghazo, F. Ghanim, Cubic B-spline method for the solution of the quadratic Riccati differential equation, AIMS Math., 8 (2023), 9576–9584. https://doi.org 10.3934/math.2023483 |
[23] | R. Abdelrahim, Z. Omar, O. Ala'yed, B. Batiha, Hybrid third derivative block method for the solution of general second order initial value problems with generalized one step point, Eur. J. Pure Appl. Math., 12 (2019), 1199–1214. https://doi.org/10.29020/nybg.ejpam.v12i3.3425 doi: 10.29020/nybg.ejpam.v12i3.3425 |
[24] | O. H. Ala'yed, T. Y. Ying, A. Saaban, New fourth order quartic spline method for solving second order boundary value problems, Matematika, 31 (2015), 149–157. https://doi.org/10.11113/matematika.v31.n2.789 doi: 10.11113/matematika.v31.n2.789 |
[25] | A. S. Heilat, N. N. Hamid, A. I. M. Ismail, Extended cubic B-spline method for solving a linear system of second-order boundary value problems, SpringerPlus, 5 (2016), 1314. https://doi.org/10.1186/s40064-016-2936-4 doi: 10.1186/s40064-016-2936-4 |
[26] | O. Ala'yed, T. Y. Ying, A. Saaban, Quintic spline method for solving linear and nonlinear boundary value problems, Sains Malays., 45 (2016), 1007–1012. |
[27] | B. Batiha, F. Ghanim, O. Ala'yed, R. E. Hatamleh, A. S. Heilat, H. Zureigat, et al., Solving multispecies Lotka-Volterra equations by the Daftardar-Gejji and Jafari method, Int. J. Math. Math. Sci., 2022 (2022), 1839796. https://doi.org/10.1155/2022/1839796 doi: 10.1155/2022/1839796 |
[28] | O. Ala'yed, T. Y. Ying, A. Saaban, Numerical solution of first order initial value problem using quartic spline method, AIP Conf. Proc., 1691 (2015), 040003. https://doi.org/10.1063/1.4937053 doi: 10.1063/1.4937053 |
[29] | M. Al-Towaiq, O. Ala'yed, An efficient algorithm based on the cubic spline for the solution of Bratu-type equation, J. Interdiscip. Math., 17 (2014), 471–484. https://doi.org/10.1080/09720502.2013.842050 doi: 10.1080/09720502.2013.842050 |
[30] | O. Ala'yed, B. Batiha, R. Abdelrahim, A. A. Jawarneh, On the numerical solution of the nonlinear Bratu type equation via quintic B-spline method, J. Interdiscip. Math., 22 (2019), 405–413. https://doi.org/10.1080/09720502.2019.1624305 doi: 10.1080/09720502.2019.1624305 |
[31] | A. S. Heilat, B. Batiha, T. Qawasmeh, R. Hatamleh, Hybrid cubic B-spline method for solving a class of singular boundary value problems, Eur. J. Pure Appl. Math., 16 (2023), 751–762. https://doi.org/10.29020/nybg.ejpam.v16i2.4725 doi: 10.29020/nybg.ejpam.v16i2.4725 |
[32] | S. E. Kutluay, Y. U. Ucar, Numerical solutions of the coupled Burgers' equation by the Galerkin quadratic B‐spline finite element method, Math. Methods Appl. Sci., 36 (2013), 2403–2415. https://doi.org/10.1002/mma.2767 doi: 10.1002/mma.2767 |
[33] | N. Ezhov, F. Neitzel, S. Petrovic, Spline approximation, part 1: basic methodology, J. Appl. Geod., 12 (2018), 139–55. https://doi.org/10.1515/jag-2017-0029 doi: 10.1515/jag-2017-0029 |
[34] | N. Ezhov, F. Neitzel, S. Petrovic, Spline approximation, part 2: from polynomials in the monomial basis to B-splines: A derivation, Mathematics, 9 (2021), 2198. https://doi.org/10.3390/math9182198 doi: 10.3390/math9182198 |
[35] | R. K. Lodhi, H. K. Mishra, Quintic B-spline method for numerical solution of fourth order singular perturbation boundary value problems, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 141–151. https://doi.org/10.24193/subbmath.2018.1.09 doi: 10.24193/subbmath.2018.1.09 |
[36] | S. Özer, Numerical solution of the Rosenau-KdV-RLW equation by operator splitting techniques based on B‐spline collocation method, Numer. Methods Partial Differ. Equ., 35 (2019), 1928–1943. https://doi.org/10.1002/num.22387 doi: 10.1002/num.22387 |
[37] | A. M. Nagy, A. A. El-Sayed, A novel operational matrix for the numerical solution of nonlinear Lane-Emden system of fractional order, Comput. Appl. Math., 40 (2021), 85. https://doi.org/10.1007/s40314-021-01477-8 doi: 10.1007/s40314-021-01477-8 |