The conventional trigonometric B-spline basis of odd order for piecewise trigonometric polynomial space possesses a lot of good modeling properties. However, its order cannot be increased by the integral method like B-spline because of the particularity of the trigonometric polynomials. In the paper, a basis in an even-order trigonometric polynomial space is defined, and its integral relation with the existing odd-order trigonometric B-spline basis is obtained. First, the condition of the knot sequence is improved to ensure the nonnegativity of the prior odd-order trigonometric B-spline basis. Under the revised condition, a set of truncation functions is given and used to build a basis for piecewise trigonometric polynomial space without constant terms, which is also known as the direct current (DC) component-free space, secondly. The basis fulfills local support and continuity properties like B-spline of even order, and each basis function is unique under a constant multiple. Thirdly, the integral formula from the even-order to odd-order trigonometric B-spline basis is proved.
Citation: Mei Li, Wanqiang Shen. Integral method from even to odd order for trigonometric B-spline basis[J]. AIMS Mathematics, 2024, 9(12): 36470-36492. doi: 10.3934/math.20241729
The conventional trigonometric B-spline basis of odd order for piecewise trigonometric polynomial space possesses a lot of good modeling properties. However, its order cannot be increased by the integral method like B-spline because of the particularity of the trigonometric polynomials. In the paper, a basis in an even-order trigonometric polynomial space is defined, and its integral relation with the existing odd-order trigonometric B-spline basis is obtained. First, the condition of the knot sequence is improved to ensure the nonnegativity of the prior odd-order trigonometric B-spline basis. Under the revised condition, a set of truncation functions is given and used to build a basis for piecewise trigonometric polynomial space without constant terms, which is also known as the direct current (DC) component-free space, secondly. The basis fulfills local support and continuity properties like B-spline of even order, and each basis function is unique under a constant multiple. Thirdly, the integral formula from the even-order to odd-order trigonometric B-spline basis is proved.
[1] | C. de Boor, A practical guide to splines, New York: Springer-Verlag, 2001. |
[2] | X. Han, Normalized B-basis of the space of trigonometric polynomials and curve design, Appl. Math. Comput., 251 (2015), 336–348. https://doi.org/10.1016/j.amc.2014.11.070 doi: 10.1016/j.amc.2014.11.070 |
[3] | T. Goodman, S. Lee, Interpolatory and variation-diminishing properties of generalized B-splines, Proc. Roy. Soc. Edinb. A, 96 (1984), 249–259. https://doi.org/10.1017/S0308210500025385 doi: 10.1017/S0308210500025385 |
[4] | T. Goodman, S. Lee, B-splines on the circle and trigonometric B-splines, In: Approximation theory and spline functions, Dordrecht: Springer, 1984,297–325. https://doi.org/10.1007/978-94-009-6466-2_18 |
[5] | M. Khater, A. Ahmed, Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes, AIMS Mathematics, 6 (2021), 5896–5908. https://doi.org/10.3934/math.2021349 doi: 10.3934/math.2021349 |
[6] | P. Koch, T. Lyche, M. Neamtu, L. Schumaker, Control curves and knot insertion for trigonometric splines, Adv. Comput. Math., 3 (1995), 405–424. https://doi.org/10.1007/BF03028369 doi: 10.1007/BF03028369 |
[7] | T. Lyche, L. Schumaker, S. Stanley, Quasi-interpolants based on trigonometric splines, J. Approx. Theory, 95 (1998), 280–309. https://doi.org/10.1006/jath.1998.3196 doi: 10.1006/jath.1998.3196 |
[8] | T. Lyche, R. Winther, A stable recurrence relation for trigonometric B-splines, J. Approx. Theory, 25 (1979), 266–279. https://doi.org/10.1016/0021-9045(79)90017-0 doi: 10.1016/0021-9045(79)90017-0 |
[9] | A. Majeed, M. Abbas, A. Sittar, M. Misro, M. Kamran, Airplane designing using quadratic trigonometric B-spline with shape parameters, AIMS Mathematics, 6 (2021), 7669–7683. https://doi.org/10.3934/math.2021445 doi: 10.3934/math.2021445 |
[10] | E. Mainar, J. Peña, A general class of Bernstein-like bases, Comput. Math. Appl., 53 (2007), 1686–1703. https://doi.org/10.1016/j.camwa.2006.12.018 doi: 10.1016/j.camwa.2006.12.018 |
[11] | M. Neamtu, H. Pottmann, L. Schumaker, Designing NURBS cam profiles using trigonometric splines, J. Mech. Des., 120 (1998), 175–180. https://doi.org/10.1115/1.2826956 doi: 10.1115/1.2826956 |
[12] | R. Noureen, M. Naeem, D. Baleanu, P. Mohammed, M. Almusawa, Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation, AIMS Mathematics, 8 (2023), 25343–25370. https://doi.org/10.3934/math.20231293 doi: 10.3934/math.20231293 |
[13] | J. Pena, Shape preserving representations for trigonometric polynomial curves, Comput. Aided Geom. D., 14 (1997), 5–11. https://doi.org/10.1016/S0167-8396(96)00017-9 doi: 10.1016/S0167-8396(96)00017-9 |
[14] | J. Sánchez-Reyes, Single-valued spline curves in polar coordinates, Comput. Aided Design, 24 (1992), 307–315. https://doi.org/10.1016/0010-4485(92)90048-F doi: 10.1016/0010-4485(92)90048-F |
[15] | J. Sánchez-Reyes, Harmonic rational Bézier curves, p-Bézier curves, and trigonometric polynomials, Comput. Aided Geom. D., 15 (1998), 909–923. https://doi.org/10.1016/S0167-8396(98)00031-4 doi: 10.1016/S0167-8396(98)00031-4 |
[16] | H. Speleers, Algorithm 1020: computation of multi-degree Tchebycheffian B-splines, ACM Trans. Math. Software, 48 (2022), 12. https://doi.org/10.1145/3478686 doi: 10.1145/3478686 |
[17] | L. Schumaker, Spline functions: basic theory, 3 Eds., Cambridge: Cambridge University Press, 2007. https://doi.org/10.1017/CBO9780511618994 |
[18] | I. Schoenberg, On trigonometric spline interpolation, Journal of Mathematics and Mechanics, 13 (1964), 795–825. |
[19] | S. Thottoli, M. Tamsir, M. Meetei, A. Msmali, Numerical investigation of nonlinear extended Fisher-Kolmogorov equation via quintic trigonometric B-spline collocation technique, AIMS Mathematics, 9 (2024), 17339–17358. https://doi.org/10.3934/math.2024843 doi: 10.3934/math.2024843 |
[20] | G. Walz, Identities for trigonometric B-splines with an application to curve design, BIT Numer. Math., 37 (1997), 189–201. https://doi.org/10.1007/bf02510180 doi: 10.1007/bf02510180 |
[21] | G. Wang, Q. Chen, M. Zhou, NUAT B-spline curves, Comput. Aided Geom. D., 21 (2004), 193–205. https://doi.org/10.1016/j.cagd.2003.10.002 doi: 10.1016/j.cagd.2003.10.002 |