Let $ n \geq 1 $ be a fixed integer. Within this study, we present a novel approach for discovering reversible codes over rings, leveraging the concept of $ r $-glifted polynomials. This technique allows us to achieve optimal reversible codes. As we extend our methodology to the domain of DNA codes, we establish a correspondence between $ 4t $-bases of DNA and elements within the ring $ R_{2t} = F_{4^{2t}}[u]/(u^{2}-1) $. By employing a variant of $ r $-glifted polynomials, we successfully address the challenges of reversibility and complementarity in DNA codes over this specific ring. Moreover, we are able to generate reversible and reversible-complement DNA codes that transcend the limitations of being linear cyclic codes generated by a factor of $ x^n-1 $.
Citation: Turki Alsuraiheed, Elif Segah Oztas, Shakir Ali, Merve Bulut Yilgor. Reversible codes and applications to DNA codes over $ F_{4^{2t}}[u]/(u^2-1) $[J]. AIMS Mathematics, 2023, 8(11): 27762-27774. doi: 10.3934/math.20231421
Let $ n \geq 1 $ be a fixed integer. Within this study, we present a novel approach for discovering reversible codes over rings, leveraging the concept of $ r $-glifted polynomials. This technique allows us to achieve optimal reversible codes. As we extend our methodology to the domain of DNA codes, we establish a correspondence between $ 4t $-bases of DNA and elements within the ring $ R_{2t} = F_{4^{2t}}[u]/(u^{2}-1) $. By employing a variant of $ r $-glifted polynomials, we successfully address the challenges of reversibility and complementarity in DNA codes over this specific ring. Moreover, we are able to generate reversible and reversible-complement DNA codes that transcend the limitations of being linear cyclic codes generated by a factor of $ x^n-1 $.
[1] | L. M. Adleman, Molecular computation of solutions to combinatorial problems, Science, 266 (1994), 1021–1024. https://doi.org/10.1126/science.7973651 doi: 10.1126/science.7973651 |
[2] | D. Boneh, C. Dunworth, R. J. Lipton, Breaking DES using a molecular computer, DNA Based Comput., 27 (1996), 37. |
[3] | L. M. Adleman, P. W. Rothemund, S. Roweis, E. Winfree, On applying molecular computation to the data encryption standard, J. Comput. Biol., 6 (1999), 53–63. https://doi.org/10.1089/cmb.1999.6.53 doi: 10.1089/cmb.1999.6.53 |
[4] | M. Mansuripur, P. K. Khulbe, S. M. Kuebler, J. W. Perry, M. S. Giridhar, N. Peyghambarian, Information Storage and retrieval using macromolecules as storage media, Optical Data Storage, 2003. https://doi.org/10.1364/ODS.2003.TuC2 |
[5] | L. S. Liebovitch, Y. Tao, A. T. Todorov, L. Levine, Is there an error correcting code in the base sequence in DNA? Biophys. J., 71 (1996), 1539–1544. |
[6] | M. M. Brandao, L. Spoladore, L. C. Faria, A. S. Rocha, M. C. Silva-Filho, R. Palazzo, Ancient DNA sequence revealed by error-correcting codes, Sci. Rep., 5 (2015), 12051. https://doi.org/10.1038/srep12051 doi: 10.1038/srep12051 |
[7] | A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith, et al., Demonstration of a word design strategy for DNA computing on surfaces, Nucleic Acids Res., 25 (1997), 4748–4757. https://doi.org/10.1093/nar/25.23.4748 doi: 10.1093/nar/25.23.4748 |
[8] | O. D. King, Bounds for DNA codes with constant GC-content, Electron. J. Combin., 10 (2003), 1–13. |
[9] | M. Li, H. J. Lee, A. E. Condon, R. M. Corn, DNA word design strategy for creating sets of non-interacting oligonucleotides for DNA microarrays, Langmuir, 18 (2002), 805–812. https://doi.org/10.1021/la0112209 doi: 10.1021/la0112209 |
[10] | A. Marathe, A. E. Condon, R. M. Corn, On combinatorial DNA word design, J. Comput. Biol., 8 (2001), 201–219. https://doi.org/10.1089/10665270152530818 doi: 10.1089/10665270152530818 |
[11] | I. Siap, T. Abualrub, A. Ghrayeb, Similarity cyclic DNA codes over rings, In: 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008. https://doi.org/10.1109/ICBBE.2008.149 |
[12] | B. Yildiz, I. Siap, Cyclic codes over $\mathbb {F} _2[u]/(u^4-1)$ and applications to DNA codes, Comput. Math. Appl., 63 (2012), 1169–1176. https://doi.org/10.1016/j.camwa.2011.12.029 doi: 10.1016/j.camwa.2011.12.029 |
[13] | E. S. Oztas, I. Siap, Lifted polynomials over $F_16$ and their applications to DNA codes, Filomat, 27 (2013), 459–466. https://doi.org/10.2298/FIL1303459O doi: 10.2298/FIL1303459O |
[14] | E. S. Oztas, I. Siap, On a generalization of lifted polynomials over finite fields and their applications to DNA codes, Int. J. Comput. Math., 92 (2015), 1976–1988. https://doi.org/10.1080/00207160.2014.930449 doi: 10.1080/00207160.2014.930449 |
[15] | T. Abualrub, A. Ghrayeb, X. N. Zeng, Construction of cyclic codes over GF (4) for DNA computing, J. Franklin Inst., 343 (2006), 448–457. https://doi.org/10.1016/j.jfranklin.2006.02.009 doi: 10.1016/j.jfranklin.2006.02.009 |
[16] | P. Gaborit, O. D. King, Linear constructions for DNA codes, Theoret. Comput. Sci., 334 (2005), 99–113. https://doi.org/10.1016/j.tcs.2004.11.004 doi: 10.1016/j.tcs.2004.11.004 |
[17] | N. Aboluion, D. H. Smith, S. Perkins, Linear and nonlinear constructions of DNA codes with Hamming distance d, constant GC-content and a reverse-complement constraint, Discrete Math., 312 (2012), 1062–1075. https://doi.org/10.1016/j.disc.2011.11.021 doi: 10.1016/j.disc.2011.11.021 |
[18] | Y. M. Chee, S. Ling, Improved lower bounds for constant GC-content DNA codes, IEEE Trans. Inform. Theory, 54 (2008), 391–394. https://doi.org/10.1109/TIT.2007.911167 doi: 10.1109/TIT.2007.911167 |
[19] | D. H. Smith, N. Aboluion, R. Montemanni, S. Perkins, Linear and nonlinear constructions of DNA codes with Hamming distance d and constant GC-content, Discrete Math., 311 (2011), 1207–1219. https://doi.org/10.1016/j.disc.2010.03.005 doi: 10.1016/j.disc.2010.03.005 |
[20] | K. Guenda, T. A. Gulliver, Construction of cyclic codes over $\mathbb {F} _2+ u\mathbb {F} _2$ for DNA computing, Appl. Algebra Engrg. Comm. Comput., 24 (2013), 445–459. https://doi.org/10.1007/s00200-013-0188-x doi: 10.1007/s00200-013-0188-x |
[21] | I. Siap, T. Abualrub, A. Ghrayeb, Cyclic DNA codes over the ring $\mathbb {F} _2[u]/(u^2-1)$ based on the deletion distance, J. Franklin Inst., 346 (2009), 731–740. https://doi.org/10.1016/j.jfranklin.2009.07.002 doi: 10.1016/j.jfranklin.2009.07.002 |
[22] | M. Ashraf, W. Rehman, G. Mohammad, M. Asim, On reversible codes over a non-chain ring, Comput. Appl. Math., 42 (2023), 269. https://doi.org/10.1007/s40314-023-02407-6 doi: 10.1007/s40314-023-02407-6 |
[23] | S. Das, K. G. Benerjee, A. Banerjee, On DNA codes over the non-chain ring $\mathbb{Z}_4+u\mathbb{Z}_4+u^2\mathbb{Z}_4$ with $u^3 = 1$, IEEE ITW, 2022,660–665. |
[24] | H. Q. Dinh, A. K. Singh, S. Pattanayak, S. Sriboonchitta, Cyclic DNA codes over the ring $\mathbb {F} _2+ u\mathbb {F} _2+ v\mathbb {F} _2+ uv\mathbb {F} _2+ v^ 2\mathbb {F} _2+ uv^ 2\mathbb {F} _2 $, Des. Codes Crypto., 7 (2017), 1451–1467. |
[25] | H. Q. Dinh, A. K. Singh, S. Pattanayak, S. Sriboonchitta, Construction of cyclic DNA codes over the ring $\mathbb{Z}_4[u]\backslash \langle u^2-1 \rangle$ based on the deletion distance, Theoret. Comput. Sci., 773 (2019), 27–42. |
[26] | H. Q. Dinh, S. Pathak, A. K. Upadhyay, W. Yamaka, New DNA codes from cyclic codes over mixed alphabets, Mathematics, 8 (2020), 1977. https://doi.org/10.3390/math8111977 doi: 10.3390/math8111977 |
[27] | O. Prakash, A. Singh, R. K. Verma, P. Sole, W. Cheng, DNA code from cyclic and skew cyclic codes over $\mathbb{F}_4/\langle v \rangle$, Entropy, 25 (2023), 239. https://doi.org/10.3390/e25020239 doi: 10.3390/e25020239 |
[28] | L. C. B. Faria, A. S. L. Rocha, J. H. Kleinschmidt, M. C. Silva-Filho, E. Bim, R. H. Herai, et al., Is a genome a codeword of an error-correcting code? PLoS One, 7 (2012), e36644. https://doi.org/10.1371/journal.pone.0036644 |
[29] | E. S. Oztas, Glift codes over chain ring and non-chain ring $R_{e, s}$, Bull. Korean Math. Soc., 59 (2022), 1557–1565. |
[30] | J. L. Massey, Reversible codes, Inform. Control, 7 (1964), 369–380. https://doi.org/10.1016/S0019-9958(64)90438-3 |
[31] | J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Dev., 4 (1960), 532–542. https://doi.org/10.1147/rd.45.0532 doi: 10.1147/rd.45.0532 |
[32] | K. Shiromoto, L. Storme, A Griesmer bound for linear codes over finite quasi-Frobenius rings, Discrete Appl. Math., 128 (2003), 263–274. https://doi.org/10.1016/S0166-218X(02)00450-X doi: 10.1016/S0166-218X(02)00450-X |