This study presents a novel approach to defining topological rough semigroups on an approximation space. The concepts of topological space and rough semigroup are naturally combined to achieve this goal. Also, some basic results and examples are presented. Furthermore, some compactness properties are also studied. In addition, their rough subsemigroups and rough ideals are analysed.
Citation: Nurettin Bağırmaz. A topological approach for rough semigroups[J]. AIMS Mathematics, 2024, 9(10): 29633-29644. doi: 10.3934/math.20241435
This study presents a novel approach to defining topological rough semigroups on an approximation space. The concepts of topological space and rough semigroup are naturally combined to achieve this goal. Also, some basic results and examples are presented. Furthermore, some compactness properties are also studied. In addition, their rough subsemigroups and rough ideals are analysed.
[1] | Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341–356. http://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956 |
[2] | M. Podsiadło, H. Rybiński, Rough sets in economy and finance, In: Transactions on rough sets XVII, Berlin: Springer, 2014,109–173. https://doi.org/10.1007/978-3-642-54756-0_6 |
[3] | A. Skowron, S. Dutta, Rough sets: past, present, and future, Nat. Comput., 17 (2018), 855–876. https://doi.org/10.1007/s11047-018-9700-3 doi: 10.1007/s11047-018-9700-3 |
[4] | Z. Pawlak, A. Skowron, Rough sets and Boolean reasoning, Inform. Sciences, 177 (2007), 41–73. https://doi.org/10.1016/j.ins.2006.06.007 doi: 10.1016/j.ins.2006.06.007 |
[5] | P. Pattaraintakorn, N. Cercone, Integrating rough set theory and medical applications, Appl. Math. Lett., 21 (2008), 400–403. https://doi.org/10.1016/j.aml.2007.05.010 doi: 10.1016/j.aml.2007.05.010 |
[6] | N. Bağırmaz, A. F. Özcan, Rough semigroups on approximation spaces, International Journal of Algebra, 9 (2015), 339–350. http://doi.org/10.12988/ija.2015.5742 doi: 10.12988/ija.2015.5742 |
[7] | R. Biswas, S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math., 42 (1994), 251–254. |
[8] | W. Cheng, Z. W. Mo, J. Wang, Notes on "the lower and upper approximations in a fuzzy group" and "rough ideals in semigroups", Inform. Sciences, 177 (2007), 5134–5140. https://doi.org/10.1016/j.ins.2006.12.006 doi: 10.1016/j.ins.2006.12.006 |
[9] | B. Davvaz, Roughness in rings, Inform. Sciences, 164 (2004), 147–163. https://doi.org/10.1016/j.ins.2003.10.001 doi: 10.1016/j.ins.2003.10.001 |
[10] | N. Kuroki, P. P. Wang, The lower and upper approximations in a fuzzy group, Inform. Sciences, 90 (1996), 203–220. https://doi.org/10.1016/0020-0255(95)00282-0 doi: 10.1016/0020-0255(95)00282-0 |
[11] | N. Kuroki, Rough ideals in semigroups, Inform. Sciences, 100 (1997), 139–163. https://doi.org/10.1016/S0020-0255(96)00274-5 doi: 10.1016/S0020-0255(96)00274-5 |
[12] | F. Li, Z. L. Zhang, The homomorphisms and operations of rough groups, Sci. World J., 2014 (2014), 507972. https://doi.org/10.1155/2014/507972 doi: 10.1155/2014/507972 |
[13] | D. Q. Miao, S. Q. Han, D. G. Li, L. J. Sun, Rough group, rough subgroup and their properties, In: Rough sets, fuzzy sets, data mining, and granular computing, Berlin: Springer, 2005,104–113. https://doi.org/10.1007/11548669_11 |
[14] | C. Z. Wang, D. G. Chen, A short note on some properties of rough groups, Comput. Math. Appl., 59 (2010), 431–436. https://doi.org/10.1016/j.camwa.2009.06.024 doi: 10.1016/j.camwa.2009.06.024 |
[15] | Z. H. Wang, L. Shu, The lower and upper approximations in a group, Int. J. Math. Comput. Sci., 6 (2012), 158–162. https://doi.org/10.5281/zenodo.1072425 doi: 10.5281/zenodo.1072425 |
[16] | C. Z. Wang, D. G. Chen, Q. H. Hu, On rough approximations of groups, Int. J. Mach. Learn. & Cyber., 4 (2013), 445–449. https://doi.org/10.1007/s13042-012-0108-6 doi: 10.1007/s13042-012-0108-6 |
[17] | H. Tasbozan, I. Icen, The upper and lower approximations in rough subgroupoid of a groupoid, Moroccan Journal of Pure and Applied Analysis, 4 (2018), 85–93. https://doi.org/10.1515/mjpaa-2018-0009 doi: 10.1515/mjpaa-2018-0009 |
[18] | Q. F. Zhang, A. M. Fu, S. X. Zhao, Rough modules and their some properties, 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 2006, 2290–2293. https://doi.org/10.1109/ICMLC.2006.258675 |
[19] | F. A. Agusfrianto, F. Fitriani, Y. Mahatma, Rough rings, rough subrings and rough ideeals, Journal of Fundamental Mathematics and Applications, 5 (2022), 96–103. https://doi.org/10.14710/jfma.v5i2.15194 doi: 10.14710/jfma.v5i2.15194 |
[20] | S. T. Almohammadi, C. Ozel, A new approach to rough vector spaces, General Letters in Mathematics, 6 (2019), 1–9. https://doi.org/10.31559/glm2019.6.1.1 doi: 10.31559/glm2019.6.1.1 |
[21] | A. Skowron, On topology in information system, Bulletin of the Polish Academic Science and Mathematics, 36 (1988), 477–480. |
[22] | A. Wiweger, On topological rough sets, Bulletin of the Polish Academy of Sciences Mathematics, 37 (1989), 51–62. |
[23] | E. F. Lashin, A. M. Kozae, A. A. A. Khadra, T. Medhat, Rough set theory for topological spaces, Int. J. Approx. Reason., 40 (2005), 35–43. https://doi.org/10.1016/j.ijar.2004.11.007 doi: 10.1016/j.ijar.2004.11.007 |
[24] | Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sciences, 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3 |
[25] | K. Y. Qin, J. L. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sciences, 178 (2008), 4138–4141. https://doi.org/10.1016/j.ins.2008.07.002 doi: 10.1016/j.ins.2008.07.002 |
[26] | A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, Some methods for generating topologies by relations, B. Malays. Math. Sci. So., 31 (2008), 35–45. |
[27] | Z. Pei, D. W. Pei, L. Zheng, Topology vs generalized rough sets, Int. J. Approx. Reason., 52 (2011), 231–239. https://doi.org/10.1016/j.ijar.2010.07.010 doi: 10.1016/j.ijar.2010.07.010 |
[28] | A. Kandil, M. M. Yakout, A. Zakaria, Generalized rough sets via ideals, Annals of Fuzzy Mathematics and Informatics, 5 (2013), 525–532. |
[29] | M. Hosny, Idealization of j-approximation spaces, Filomat, 34 (2020), 287–301. https://doi.org/10.2298/FIL2002287H doi: 10.2298/FIL2002287H |
[30] | M. Hosny, Rough sets theory via new topological notions based on ideals and applications, AIMS Mathematics, 7 (2022), 869–902. https://doi.org/10.3934/math.2022052 doi: 10.3934/math.2022052 |
[31] | H. I. Mustafaa, T. M. Al-shami, R. Wassefa, Rough set paradigms via containment neighborhoods and ideals, Filomat, 37 (2023), 4683–4702. https://doi.org/10.2298/FIL2314683M doi: 10.2298/FIL2314683M |
[32] | T. M. Al-Shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x doi: 10.1007/s40747-022-00704-x |
[33] | T. M. Al-Shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0 |
[34] | T. M. Al-Shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883. https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7 |
[35] | T. M. Al-Shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-07627-2 doi: 10.1007/s00500-022-07627-2 |
[36] | T. M. Al-Shami, A. Mhemdi, Approximation spaces inspired by subset rough neighborhoods with applications, Demonstr. Math., 56 (2023), 20220223. https://doi.org/10.1515/dema-2022-0223 doi: 10.1515/dema-2022-0223 |
[37] | A. Ç. Güler, E. D. Yıldırım, O. B. Özbakır, Rough approximations based on different topologies via ideals, Turk. J. Math., 46 (2022), 1177–1192. https://doi.org/10.55730/1300-0098.3150 doi: 10.55730/1300-0098.3150 |
[38] | N. Bağırmaz, İ. İçen, A. F. Özcan, Topological rough groups, Topol. Algebra Appl., 4 (2016), 31–38. https://doi.org/10.1515/taa-2016-0004 doi: 10.1515/taa-2016-0004 |
[39] | A. Altassan, N. Alharbi, H. Aydi, C. Özel, Rough action on topological rough groups, Appl. Gen. Topol., 21 (2020), 295–304. https://doi.org/10.4995/agt.2020.13156 doi: 10.4995/agt.2020.13156 |
[40] | P. Y. Li, W. L. Liu, L. Mou, Z. F. Guo, On separation axioms of topological rough groups, Soft Comput., 27 (2023), 57–61. https://doi.org/10.1007/s00500-022-07521-x doi: 10.1007/s00500-022-07521-x |
[41] | N. Alharbi, A. Altassan, H. Aydi, C. Özel, Rough quotient in topological rough sets, Open Math., 17 (2019), 1750–1755. https://doi.org/10.1515/math-2019-0138 doi: 10.1515/math-2019-0138 |
[42] | T. M. G. Ahsanullah, Rough uniformity of topological rough groups and L-fuzzy approximation groups, J. Intell. Fuzzy Syst., 43 (2022), 1129–1139. https://doi.org/10.3233/JIFS-212634 doi: 10.3233/JIFS-212634 |
[43] | F. C. Lin, Q. Q. Sun, Y. J. Lin, J. J. Li, Some topological properties of topological rough groups, Soft Comput., 25 (2021), 3441–3453. https://doi.org/10.1007/s00500-021-05631-6 doi: 10.1007/s00500-021-05631-6 |
[44] | E. Kieou, M. Todjro, Y. Mensah, Rough representations of rough topological groups, Appl. Gen. Topol., 24 (2023), 333–341. http://doi.org/10.4995/agt.2023.18577 doi: 10.4995/agt.2023.18577 |
[45] | G. Oğuz, İ. İçen, M. H. Gürsoy, Lie rough groups, Filomat, 32 (2018), 5735–5741. https://doi.org/10.2298/FIL1816735O doi: 10.2298/FIL1816735O |
[46] | J. H. Carruth, J. A. Hildebrant, R. J. Koch, The theory of topological semigroups, New York: Marcel Dekker Inc, 1983. |