Research article

Decision-making in diagnosing heart failure problems using basic rough sets

  • Correction on: AIMS Mathematics 9: 34270-34271
  • Received: 10 May 2024 Revised: 10 June 2024 Accepted: 14 June 2024 Published: 10 July 2024
  • MSC : 54A05, 54C10, 54H30, 68U35

  • This manuscript introduces novel rough approximation operators inspired by topological structures, which offer a more flexible approach than existing methods by extending the scope of applications through a reliance on a general binary relation without constraints. Initially, four distinct types of neighborhoods, termed basic-minimal neighborhoods, are generated from any binary relation. The relationships between these neighborhoods and their properties are elucidated. Subsequently, new rough set models are constructed from these neighborhoods, outlining the main characteristics of their lower and upper approximations. These approximations are applied to classify the subset regions and to compute the accuracy measures. The primary advantages of this approach include its ability to achieve the highest accuracy values compared to all approaches in the published literature and to maintain the monotonicity property of the accuracy and roughness measures. Furthermore, the efficacy of the proposed technique is demonstrated through the analysis of heart failure diagnosis data, showcasing a 100% accuracy rate compared to previous methods, thus highlighting its clinical significance. Additionally, the topological properties of the proposed approaches and the topologies generated from the suggested neighborhoods are discussed, positioning these methods as a bridge to more topological applications in the rough set theory. Finally, an algorithm and flowchart are developed to illustrate the determination and utilization of basic-minimal exact sets in decision-making problems.

    Citation: D. I. Taher, R. Abu-Gdairi, M. K. El-Bably, M. A. El-Gayar. Decision-making in diagnosing heart failure problems using basic rough sets[J]. AIMS Mathematics, 2024, 9(8): 21816-21847. doi: 10.3934/math.20241061

    Related Papers:

  • This manuscript introduces novel rough approximation operators inspired by topological structures, which offer a more flexible approach than existing methods by extending the scope of applications through a reliance on a general binary relation without constraints. Initially, four distinct types of neighborhoods, termed basic-minimal neighborhoods, are generated from any binary relation. The relationships between these neighborhoods and their properties are elucidated. Subsequently, new rough set models are constructed from these neighborhoods, outlining the main characteristics of their lower and upper approximations. These approximations are applied to classify the subset regions and to compute the accuracy measures. The primary advantages of this approach include its ability to achieve the highest accuracy values compared to all approaches in the published literature and to maintain the monotonicity property of the accuracy and roughness measures. Furthermore, the efficacy of the proposed technique is demonstrated through the analysis of heart failure diagnosis data, showcasing a 100% accuracy rate compared to previous methods, thus highlighting its clinical significance. Additionally, the topological properties of the proposed approaches and the topologies generated from the suggested neighborhoods are discussed, positioning these methods as a bridge to more topological applications in the rough set theory. Finally, an algorithm and flowchart are developed to illustrate the determination and utilization of basic-minimal exact sets in decision-making problems.



    加载中


    [1] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [2] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Dordrecht: Springer, 1991. https://doi.org/10.1007/978-94-011-3534-4
    [3] Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sci., 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3
    [4] A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fund. Inform., 27 (1996), 245–253. https://doi.org/10.3233/FI-1996-272311 doi: 10.3233/FI-1996-272311
    [5] E. A. Abo-Tabl, Rough sets and topological spaces based on similarity, Int. J. Mach. Learn. Cyber., 4 (2013), 451–458. https://doi.org/10.1007/s13042-012-0107-7 doi: 10.1007/s13042-012-0107-7
    [6] J. H. Dai, S. C. Gao, G. J. Zheng, Generalized rough set models determined by multiple neighborhoods generated from a similarity relation, Soft Comput., 22 (2018), 2081–2094. https://doi.org/10.1007/s00500-017-2672-x doi: 10.1007/s00500-017-2672-x
    [7] K. Qin, J. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sci., 178 (2008), 4138–4141. https://doi.org/10.1016/j.ins.2008.07.002 doi: 10.1016/j.ins.2008.07.002
    [8] A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, New approach for basic rough set concepts, In: Rough sets, fuzzy sets, data mining, and granular computing, Berlin, Heidelberg: Springer, 13641 (2005), 64–73. https://doi.org/10.1007/11548669_7
    [9] R. Abu-Gdairi, M. A. El-Gayar, M. K. El-Bably, K. K. Fleifel, Two different views for generalized rough sets with applications, Mathematics, 9 (2022), 2275. https://doi.org/10.3390/math9182275 doi: 10.3390/math9182275
    [10] R. Abu-Gdairi, M. A. El-Gayar, T. M. Al-shami, A. S. Nawar, M. K. El-Bably, Some topological approaches for generalized rough sets and their decision-making applications, Symmetry, 14 (2022), 95. https://doi.org/10.3390/sym14010095 doi: 10.3390/sym14010095
    [11] M. E. Abd El-Monsef, O. A. Embaby, M. K. El-Bably, Comparison between rough set approximations based on different topologies, Int. J. Granul. Comput. Rough Sets Intell. Syst., 3 (2014), 292–305. https://doi.org/10.1504/IJGCRSIS.2014.068032 doi: 10.1504/IJGCRSIS.2014.068032
    [12] A. S. Nawar, M. K. El-Bably, A. E. F. El-Atik, Certain types of coverings based rough sets with application, J. Intell. Fuzzy Syst., 39 (2020), 3085–3098. https://doi.org/10.3233/JIFS-191542 doi: 10.3233/JIFS-191542
    [13] M. E. A. El-Monsef, A. M. Kozae, M. K. El-Bably, On generalizing covering approximation space, J. Egypt Math. Soc., 23 (2015), 535–545. https://doi.org/10.1016/j.joems.2014.12.007 doi: 10.1016/j.joems.2014.12.007
    [14] L. W. Ma, On some types of neighborhood-related covering rough sets, Int. J. Approx. Reason., 53 (2012) 901–911. https://doi.org/10.1016/j.ijar.2012.03.004 doi: 10.1016/j.ijar.2012.03.004
    [15] M. Atef, A. M. Khalil, S.-G. Li, A. A. Azzam, A. E. F. El Atik, Comparison of six types of rough approximations based on j-neighborhood space and j-adhesion neighborhood space, J. Intell. Fuzzy Syst., 39 (2020), 4515–4531. https://doi.org/10.3233/JIFS-200482 doi: 10.3233/JIFS-200482
    [16] M. K. El-Bably, T. M. Al-shami, A. S. Nawar, A. Mhemdi, Corrigendum to "Comparison of six types of rough approximations based on j-neighborhood space and j-adhesion neighborhood space", J. Intell. Fuzzy Syst., 41 (2021), 7353–7361. https://doi.org/10.3233/JIFS-211198 doi: 10.3233/JIFS-211198
    [17] M. K. El-Bably, T. M. Al-shami, Different kinds of generalized rough sets based on neighborhoods with a medical application, Int. J. Biomath., 14 (2021), 2150086. https://doi.org/10.1142/S1793524521500868 doi: 10.1142/S1793524521500868
    [18] M. K. El-Bably, E. A. Abo-Tabl, A topological reduction for predicting of a lung cancer disease based on generalized rough sets, J. Intell. Fuzzy Syst., 41 (2021), 3045–3060. https://doi.org/10.3233/JIFS-210167 doi: 10.3233/JIFS-210167
    [19] M. El Sayed, M. A. El Safty, M. K. El-Bably, Topological approach for decision-making of COVID-19 infection via a nano-topology model, AIMS Mathematics, 6 (2021), 7872–7894. https://doi.org/10.3934/math.2021457 doi: 10.3934/math.2021457
    [20] M. M. El-Sharkasy, Topological model for recombination of DNA and RNA, Int. J. Biomath., 11 (2018), 1850097. https://doi.org/10.1142/S1793524518500973 doi: 10.1142/S1793524518500973
    [21] M. A. El-Gayar, R. Abu-Gdairi, M. K. El-Bably, D. I. Taher, Economic decision-making using rough topological structures, J. Math., 2023 (2023), 4723233. https://doi.org/10.1155/2023/4723233 doi: 10.1155/2023/4723233
    [22] M. K. El-Bably, M. El-Sayed, Three methods to generalize Pawlak approximations via simply open concepts with economic applications, Soft Comput., 26 (2022), 4685–4700. https://doi.org/10.1007/s00500-022-06816-3 doi: 10.1007/s00500-022-06816-3
    [23] M. K. El-Bably, K. K. Fleifel, O. A. Embaby, Topological approaches to rough approximations based on closure operators, Granul. Comput., 7 (2022), 1–14. https://doi.org/10.1007/s41066-020-00247-x doi: 10.1007/s41066-020-00247-x
    [24] M. I. Ali, M. K. El-Bably, E. A. Abo-Tabl, Topological approach to generalized soft rough sets via near concepts, Soft Comput., 26 (2022), 499–509. https://doi.org/10.1007/s00500-021-06456-z doi: 10.1007/s00500-021-06456-z
    [25] M. K. El-Bably, R. Abu-Gdairi, M. A. El-Gayar, Medical diagnosis for the problem of Chikungunya disease using soft rough sets, AIMS Mathematics, 8 (2023), 9082–9105. https://doi.org/10.3934/math.2023455 doi: 10.3934/math.2023455
    [26] M. K. El-Bably, A. A. El Atik, Soft β-rough sets and their application to determine COVID-19, Turkish J. Math., 45 (2021), 1133–1148. https://doi.org/10.3906/mat-2008-93 doi: 10.3906/mat-2008-93
    [27] M. K. El-Bably, M. I. Ali, E. A. Abo-Tabl, New topological approaches to generalized soft rough approximations with medical applications, J. Math., 2021 (2021), 2559495. https://doi.org/10.1155/2021/2559495 doi: 10.1155/2021/2559495
    [28] M. A. El-Gayar, A. E. F. El Atik, Topological models of rough sets and decision making of COVID-19, Complexity, 2022 (2022), 2989236. https://doi.org/10.1155/2022/2989236 doi: 10.1155/2022/2989236
    [29] M. E. Abd El-Monsef, M. A. El-Gayar, R. M. Aqeel, On relationships between revised rough fuzzy approximation operators and fuzzy topological spaces, Int. J. Granul. Comput. Rough Sets Intell. Syst., 3 (2014), 257–271. https://doi.org/10.1504/IJGCRSIS.2014.068022 doi: 10.1504/IJGCRSIS.2014.068022
    [30] M. E. Abd El Monsef, M. A. El-Gayar, R. M. Aqeel, A comparison of three types of rough fuzzy sets based on two universal sets, Int. J. Mach. Learn. Cyber., 8 (2017), 343–353. https://doi.org/10.1007/s13042-015-0327-8 doi: 10.1007/s13042-015-0327-8
    [31] M. Hosny, Idealization of j-approximation spaces, Filomat, 34 (2020), 287–301. https://doi.org/10.2298/FIL2002287H doi: 10.2298/FIL2002287H
    [32] R. A. Hosny, M. K. El-Bably, A. S. Nawar, Some modifications and improvements to idealization of j-approximation spaces, J. Adv. Stud. Topol., 12 (2022), 1–7.
    [33] M. Kondo, W. A. Dudek, Topological structures of rough sets induced by equivalence relations, J. Adv. Computat. Intell. Intell. Inform., 10 (2006), 621–624. https://doi.org/10.20965/JACIII.2006.P0621 doi: 10.20965/JACIII.2006.P0621
    [34] W. Zhu, Topological approaches to covering rough sets, Inform. Sci., 177 (2007), 1499–1508. https://doi.org/10.1016/j.ins.2006.06.009 doi: 10.1016/j.ins.2006.06.009
    [35] M. E. Abd El-Monsef, A. M. Kozae, M. K. El-Bably, Generalized covering approximation space and near concepts with some applications, Appl. Comput. Inform., 12 (2016), 51–69. https://doi.org/10.1016/j.aci.2015.02.001 doi: 10.1016/j.aci.2015.02.001
    [36] Z. A. Ameen, R. A. Mohammed, T. M. Al-shami, B. A. Asaad, Novel fuzzy topologies formed by fuzzy primal frameworks, J. Intell. Fuzzy Syst., 2024, 1–10. https://doi.org/10.3233/JIFS-238408 doi: 10.3233/JIFS-238408
    [37] Z. A. Ameen, R. Abu-Gdairi, T. M. Al-shami, B. A. Asaad, M. Arar, Further properties of soft somewhere dense continuous functions and soft Baire spaces, J. Math. Comput. Sci., 32 (2023), 54–63. http://dx.doi.org/10.22436/jmcs.032.01.05 doi: 10.22436/jmcs.032.01.05
    [38] L. Ma, K. Jabeen, W. Karamti, K. Ullah, Q. Khan, H. Garg, et al., Aczel-Alsina power bonferroni aggregation operators for picture fuzzy information and decision analysis, Complex Intell. Syst., 10 (2024), 3329–3352. https://doi.org/10.1007/s40747-023-01287-x doi: 10.1007/s40747-023-01287-x
    [39] C. Zhang, D. Li, J. Liang, Multi-granularity three-way decisions with adjustable hesitant fuzzy linguistic multigranulation decision-theoretic rough sets over two universes, Inform. Sci., 507 (2020), 665–683. https://doi.org/10.1016/j.ins.2019.01.033 doi: 10.1016/j.ins.2019.01.033
    [40] P. Sivaprakasam, M. Angamuthu, Generalized Z-fuzzy soft β-covering based rough matrices and its application to MAGDM problem based on AHP method, Decis. Mak. Appl. Manag. Engrg., 6 (2023), 134–152. https://doi.org/10.31181/dmame04012023p doi: 10.31181/dmame04012023p
    [41] J. S. M. Donbosco, D. Ganesan, The Energy of rough neutrosophic matrix and its application to MCDM problem for selecting the best building construction site, Decis. Mak. Appl. Manag. Engrg., 5 (2022), 30–45. https://doi.org/10.31181/dmame0305102022d doi: 10.31181/dmame0305102022d
    [42] K. Y. Shen, Exploring the relationship between financial performance indicators, ESG, and stock price returns: A rough set-based bipolar approach, Decis. Mak. Adv., 2 (2024), 186–198. https://doi.org/10.31181/dma21202434 doi: 10.31181/dma21202434
    [43] T. M. Al-shami, An improvement of rough sets' accuracy measure using containment neighborhoods with a medical application, Inform. Sci., 569 (2021), 110–124. https://doi.org/10.1016/j.ins.2021.04.016 doi: 10.1016/j.ins.2021.04.016
    [44] T. M. Al-shami, D. Ciucci, Subset neighborhood rough sets, Knowledge Based Syst., 237 (2022), 107868. https://doi.org/10.1016/j.knosys.2021.107868 doi: 10.1016/j.knosys.2021.107868
    [45] R. Abu-Gdairi, M. K. El-Bably, The accurate diagnosis for COVID-19 variants using nearly initial-rough sets, Heliyon, 10 (2024), e31288. https://doi.org/10.1016/j.heliyon.2024.e31288 doi: 10.1016/j.heliyon.2024.e31288
    [46] K. Dickstein, A. Cohen-Solal, G. Filippatos, J. J. V. Mcmurray, Developed in collaboration with the heart failure association of the ESC (HFA) and endorsed by the european society of intensive care medicine (ESICM), Eur. J. Heart Failure, 10 (2008), 933–989.
    [47] R. A. Hosny, R. Abu-Gdairi, M. K. El-Bably, Enhancing Dengue fever diagnosis with generalized rough sets: Utilizing initial-neighborhoods and ideals, Alexandria Eng. J., 94 (2024), 68–79. https://doi.org/10.1016/j.aej.2024.03.028 doi: 10.1016/j.aej.2024.03.028
    [48] O. Dalkılıç, N. Demirta, Algorithms for Covid-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2022), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5
    [49] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [50] D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [51] F. Feng, X. Liu, V. Leoreanu-Fotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sci., 181 (2011), 1125–1137. https://doi.org/10.1016/j.ins.2010.11.004 doi: 10.1016/j.ins.2010.11.004
    [52] R. Abu-Gdairi, A. A. Nasef, M. A. El-Gayar, M. K. El-Bably, On fuzzy point applications of fuzzy topological spaces, Int. J. Fuzz. Log. Intell, Syst., 23 (2023), 162–172. https://doi.org/10.5391/IJFIS.2023.23.2.162 doi: 10.5391/IJFIS.2023.23.2.162
    [53] I. M. Taha, Some new results on fuzzy soft r-minimal spaces, AIMS Mathematics, 7 (2022), 12458–12470. https://doi.org/10.3934/math.2022691 doi: 10.3934/math.2022691
    [54] I. M. Taha, Some new separation axioms in fuzzy soft topological spaces, Filomat, 35 (2021), 1775–1783. https://doi.org/10.2298/FIL2106775T doi: 10.2298/FIL2106775T
    [55] A. S. Nawar, M. A. El-Gayar, M. K. El-Bably, R. A. Hosny, θβ-ideal approximation spaces and their applications, AIMS Mathematics, 7 (2022), 2479–2497. https://doi.org/10.3934/math.2022139 doi: 10.3934/math.2022139
    [56] R. B. Esmaeel, M. O. Mustafa, On nano topological spaces with grill-generalized open and closed sets, AIP Conf. Proc., 2414 (2023), 040036. https://doi.org/10.1063/5.0117062 doi: 10.1063/5.0117062
    [57] R. B. Esmaeel, N. M. Shahadhuh, On grill-semi-P-separation axioms, AIP Conf. Proc., 2414 (2023), 040077. https://doi.org/10.1063/5.0117064 doi: 10.1063/5.0117064
    [58] R. Abu-Gdairi, A. A. El Atik, M. K. El-Bably, Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data, AIMS Mathematics, 8 (2023), 26945–26967. https://doi.org/10.3934/math.20231379 doi: 10.3934/math.20231379
    [59] M. A. El-Gayar, R. Abu-Gdairi, Extension of topological structures using lattices and rough sets, AIMS Mathematics, 9 (2024), 7552–7569. https://doi.org/10.3934/math.2024366 doi: 10.3934/math.2024366
    [60] H. Lu, A. M. Khalil, W. Alharbi, M. A. El-Gayar, A new type of generalized picture fuzzy soft set and its application in decision making, Intell. Fuzzy Systs., 40 (2021), 12459–12475. https://doi.org/10.3233/JIFS-201706 doi: 10.3233/JIFS-201706
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(820) PDF downloads(72) Cited by(6)

Article outline

Figures and Tables

Figures(1)  /  Tables(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog