Some properties of the constant in asymptotic expansion of iterates of a cubic function were investigated. This paper analyzed the monotonicity, differentiability of the constant with respect to the initial value and the functional equation that is satisfied.
Citation: Xiaoyu Luo, Yong-Guo Shi, Kelin Li, Pingping Zhang. The constant in asymptotic expansions for a cubic recurrence[J]. AIMS Mathematics, 2024, 9(8): 21848-21859. doi: 10.3934/math.20241062
Some properties of the constant in asymptotic expansion of iterates of a cubic function were investigated. This paper analyzed the monotonicity, differentiability of the constant with respect to the initial value and the functional equation that is satisfied.
[1] | R. Sedgewick, An introduction to the analysis of algorithms, Pearson Education India, 2013. |
[2] | L. Berg, S. Stević, On the asymptotics of some systems of difference equations, J. Differ. Equations Appl., 17 (2011), 1291–1301. https://doi.org/10.1080/10236190903499311 doi: 10.1080/10236190903499311 |
[3] | R. Wong, Y. Q. Zhao, Recent advances in asymptotic analysis, Anal. Appl., 20 (2022), 1103–1146. https://doi.org/10.1142/S0219530522400012 doi: 10.1142/S0219530522400012 |
[4] | J. D. Murray, Asymptotic analysis, Springer Science & Business Media, 1984. https://doi.org/10.1007/978-1-4612-1122-8 |
[5] | A. M. Odlyzko, Asymptotic enumeration methods, Handbook Combin., 2 (1996), 1229. https://api.semanticscholar.org/CorpusID:18823184 |
[6] | D. Popa, Asymptotic expansions for the sequences of the modified discrete delay logistic model type, Qual. Theory Dyn. Syst., 22 (2023), 117. https://doi.org/10.1007/s12346-023-00819-7 doi: 10.1007/s12346-023-00819-7 |
[7] | F. Bencherif, G. Robin, On the iteration of $sin (x)$. (Sur l'itéré de $sin(x)$), Publ. Inst. Math., 56 (1994), 41–53. http://eudml.org/doc/256122 |
[8] | W. Paulsen, Asymptotic analysis and perturbation theory, CRC Press, 2013. https://doi.org/10.1201/b15165 |
[9] | X. F. Han, C. P. Chen, H. M. Srivastava, Analytical and asymptotic representations for two sequence related to Gauss' lemniscate functions, Appl. Anal. Discrete Math., 17 (2023), 525–537. https://doi.org/10.2298/AADM220810024H doi: 10.2298/AADM220810024H |
[10] | F. Olver, Asymptotics and special functions, A K Peters/CRC Press, 1997. https://doi.org/10.1201/9781439864548 |
[11] | D. Popa, Recurrent sequences and the asymptotic expansion of a function, Gazeta Mat. Ser. A, 3-4 (2019), 1–16. |
[12] | D. Popa, Asymptotic expansions for the recurrence $x_{n+1} = \frac{1}{n}\sum_{k = 1}^{n}f\left(\frac{x_{k}}{k}\right)$, Math. Methods Appl. Sci., 46 (2023), 2165–2173. https://doi.org/10.1002/mma.8634 doi: 10.1002/mma.8634 |
[13] | D. Cox, Elementary problems, Amer. Math. Mon., 91 (1984), 58. https://doi.org/10.1080/00029890.1984.11971339 doi: 10.1080/00029890.1984.11971339 |
[14] | S. Mavecha, V. Laohakosol, Asymptotic expansions of iterates of some classical functions, Appl. Math. E, 13 (2013), 77–91. |
[15] | G. Szekeres, Regular iterations of real and complex functions, Acta Math., 100 (1958), 203–258. https://doi.org/10.1007/BF02559539 doi: 10.1007/BF02559539 |
[16] | S. Stević, Asymptotic behaviour of a sequence defined by iteration, Mat. Vesnik, 48 (1996), 99–105. https://doi.org/10.4064/CM93-2-6 doi: 10.4064/CM93-2-6 |
[17] | E. Ionascu, P. Stanica, Effective asymptotic for some nonlinear recurrences and almost doubly-exponential sequences, Acta Math. Univ. Comen. New Series, 73 (2004), 75–87. |
[18] | N. G. de Bruijn, Asymptotic methods in analysis, 3 Eds., North-Holland Publishing Company, 1970. |
[19] | C. H. C. Little, K. L. Teo, B. van Brunt, An introduction to infinite products, Springer, 2022. https://doi.org/10.1007/978-3-030-90646-7 |