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1. Introduction

Asymptotic analysis has a wide range of applications in the complexity of algorithms [1], solutions
of all kinds of equations (e.g., [2–4]), combinatorial mathematics [5], some economic, biological or
physical models [6].

Let I be an interval of R and C(I, I) consist of all continuous functions f : I → I. The n-th iterate f n

of f ∈ C(I, I) is defined by
f n(x) = f

(
f n−1(x)

)
and

f 0(x) = x

for all x ∈ I recursively. Some researchers have given nice asymptotic expansions of iterates of
elementary functions (e.g., [7, 8]), some special functions (e.g., [9, 10]), and some recursive sequences
(e.g., [11, 12]). It is known from [13–15] that

Lemma 1. Let
xn+1 = f (xn)
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for all n ≥ 1, where f : (0, 1)→ (0, 1),

f (x) = x − axp+1 + o(xp+1),

a > 0, p > 0. Then

lim
n→∞

nxp
n =

1
pa
.

Furthermore, Stević [16] obtained the first two terms of the asymptotic expansion of xn for three
cases [17]. In particular, Ionascu and Stanica [17] obtained the first six terms of the asymptotic
expansion of

xn+1 = xn − x2
n,

in which, there appears a constant C depending on the initial value x1. And they have obtained some
properties of Bruijn ([18, Section 8.6], also [7]), who obtained the first six terms of the asymptotic
expansion of

xx+1 = sin(xn),

in which, there also appears a constant C depending on the initial value x1.
In many asymptotic expansions, a special constant C often appears, which is related to the initial

value and can be regard as a function of the initial value

x1 = x,

say C(x). Such constants do not have closed form expressions, but can be expressed in the limiting
form of a sequence. Studying C(x) gives an insight into the dependence of the limiting behavior on
the initial value. However, it is difficult to study the properties of such C(x) in asymptotic expansions.
First, C(x) is very sensitive to these iterated functions. Second, C(x) has no analytic closed-form
expression. As far as we know, there is no general method to study it.

In order to discover some properties of these constants in asymptotic expansions, we consider the
iterates of the cubic, i.e.,

xn+1 = f (xn), f : (0, 1)→ (0, 1), f (x) = x − x3. (1.1)

The aim of this paper is to find the limiting expression of such C(x) in the asymptotic expansion, to
prove the monotonicity, differentiability of C(x) and the functional equation that is satisfied.

The remainder of this paper is structured as follows. Section 2 presents some preliminary results on
asymptotic analysis. Section 3 gives the first six terms of the asymptotic expansion of iterates of the
cubic function is given, where C(x) does not appear in a closed form, but only in a limiting form. And
we prove some properties of C(x). A short conclusion is given in the last section.

2. Preliminaries

To compute the asymptotic expansion, we need the asymptotic estimates of the following sums.

Lemma 2. For n→ ∞, we have
∞∑

k=n

ln k
k2 =

ln n
n
+

1
n
+ o

(
1
n

)
.
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Proof. For every n ≥ 1, let define

zn =

∞∑
k=n

ln k
k2 −

ln n
n
.

We have
zn+1 − zn = −(

ln(n + 1)
n + 1

−
ln n
n
+

ln n
n2 ) ∼ −

1
n2 .

By the Stolz-Cesáro Lemma, we have

lim
n→∞

zn
1
n

= lim
n→∞

zn+1 − zn
1

n+1 −
1
n

= 1.

It follows that

zn =

∞∑
k=n

ln k
k2 −

ln n
n
∼

1
n
.

This completes the proof. □

Lemma 3. For n→ ∞, we have
∞∑

k=n

1
k2 ∼

1
n
.

Proof. The result follows immediately from the Euler Maclaurin formula

∞∑
k=n

1
k2 =

∫ ∞

n
x−2dx +

1
2n2 + o

(
1
n2

)
=

1
n
+

1
2n2 + o

(
1
n2

)
.

This completes the proof. □

The following lemma gives the first two terms of the asymptotic expansion of xn for Eq (1.1).

Lemma 4. Let
xn+1 = f (xn)

for all n ∈ N, where
f : (0, 1)→ (0, 1), f (x) = x − x3.

Then the following results hold:

(i) lim
n→∞

√
nxn =

1
√

2
.

(ii) lim
n→∞

n3/2

ln n
(xn −

1
√

2n
) = −

3

8
√

2
.

Proof. (i) It directly follows from Lemma 1.

(ii) Since xn > 0, the equation
xn+1 = xn − x3

n
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is rewritten into
1

xn+1
=

1
xn − x3

n
=

1
xn
+

xn

1 − x2
n
=

1
xn
+

1/xn(
1/x2

n
)
− 1
.

Let an = x−1
n . Then

an+1 = an +
an

a2
n − 1

.

Putting

bn =
1
2

a2
n,

we have

bn+1 − bn =
1
2

a2
n+1 −

1
2

a2
n

= 1 +
3
2

1(
a2

n − 1
) + 1

2
(
a2

n − 1
)2

= 1 +
3
2

1
(2bn − 1)

+
1
2

1
(2bn − 1)2 .

Thus
bn+1 − bn = 1 +

3
2

(2bn − 1)−1 +
1
2

(2bn − 1)−2 . (2.1)

Since
bn =

1
2x2

n
,

one can see that bn → ∞ for n→ ∞. It follows that

bn+1 − bn ≥
1
2

as n ≥ n0. So there exists a positive integer m such that bn ≥ mn. Then

b−1
n = O

(
n−1

)
and

bn = n + O(log n).

Substituting
bn = n + O(log n)

into (2.1), we have

bn = n +
3
4

log n + rn, (2.2)

where rn satisfies

rn+1 − rn = O
(
log n

n2

)
, n→ ∞.

Consequently,

xn =
1
√

2
(bn)−

1
2 =

1
√

2n

(
1 −

3
8

log n
n
+ O

(
log n

n2

))
∼

1
√

2n
−

3

8
√

2

log n
n3/2 .

This completes the proof. □
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The following result comes from [19, Corollary 2.2.3].

Lemma 5. Let
{
a j

}
be a sequence of non-negative real numbers. Then the series

∑∞
j=1 a j and the

product
∏∞

j=1

(
1 − a j

)
either both converge or both diverge.

3. Main results

First, we give the first six terms of the asymptotic expansion of xn for Eq (1.1).

Theorem 1. Let
xn+1 = f (xn)

for all integers n ≥ 1 where
f : (0, 1)→ (0, 1), f (x) = x − x3.

Then there exists a constant C ∈ R such that

C = lim
n→∞

(
2n −

3 log n
4
− 2n

√
2nxn

)
,

where C depends on the initial value x1 = x. Moreover

xn =
1
√

2n

(
1 −

3
8

log n
n
−

C
2n
+
α log2 n + β log n + γ

n2 + O
(
log3 n

n3

))
, n→ ∞,

where
α =

27
128
, β =

9
16

C −
9

32
, γ =

3
8

C2 −
3
8

C +
5

32
.

Proof. We will continue to use those symbols and expressions in the proof of Lemma 4. Since the
series

∑+∞
k=1 (rk+1 − rk) is convergent, say C. It follows from Lemma 2 that

rn =

n−1∑
k=1

(rk+1 − rk) + r1

=

∞∑
k=1

(rk+1 − rk) −
∞∑

k=n

(rk+1 − rk)

= C −
∞∑

k=n

(rk+1 − rk)

= C + O(1)
∞∑

k=n

log k
k2

= C + O
(
log n

n

)
.

According to (2.2), let

bn = n +
3
4

log n +C + λn.
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It follows from (2.1) that

λn+1 − λn = −
3
4

log
(
1 +

1
n

)
+

3
2

(
2n +

3
2

log n + 2C − 1 + 2λn

)−1

+
1
2

(
2n +

3
2

log n + 2C − 1 + 2λn

)−2

+ O
(

1
n3

)
= −

3
4

log
(
1 +

1
n

)
+

3
4n

(
1 +

3
4

log n
n
+

2C − 1
2n

+
λn

n

)−1

+
1

8n2

(
1 +

3
4

log n
n
+

2C − 1
2n

+
λn

n

)−2

+ O
(

1
n3

)
= −

3
4

(
1
n
−

1
2n2 + O

(
1
n3

))
+

3
4n

(
1 −

3
4

log n
n
−

2C − 1
2n

+ O
(
log2 n

n2

))
+

1
8n2

(
1 + O

(
log n

n

))
= −

9
16

log n
n2 +

7 − 6C
8n2 + O

(
log2 n

n3

)
.

Thus

λn+1 − λn = −
9
16

log n
n2 +

7 − 6C
8n2 + O

(
log2 n

n3

)
,

λn − λn−1 = −
9
16

log(n − 1)
(n − 1)2 +

7 − 6C
8(n − 1)2 + O

(
log2(n − 1)

(n − 1)3

)
,

· · ·

λ2 − λ1 = −
9
16

log 1
12 +

7 − 6C
8
+ O

(
log2 1

13

)
.

It follows that

λn − λ1 = −
9

16

n−1∑
k=1

log k
k2 +

(7 − 6C)
8

n−1∑
k=1

1
k2 + O

(
log2 n

n2

)
= −

9
16

 ∞∑
k=1

log k
k2 −

∞∑
k=n

log k
k2

 + (7 − 6C)
8

 ∞∑
k=1

1
k2 −

∞∑
k=n

1
k2

 + O
(
log2 n

n2

)
.

It follows from Lemmas 2 and 3, and
∞∑

k=1

1
k2 =

π2

6

that

λn =
9

16
log n

n
+
−5 + 12C

16n
+ O

(
log2 n

n2

)
.

Then

bn = n +
3
4

log n +C +
9

16
log n

n
+
−5 + 12C

16n
+ O

(
log2 n

n2

)
.
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Therefore,

xn =
1
√

2n
(bn)−

1
2 =

1
√

2n

(
1 −

3
8

log n
n
−

C
2n
+
α log2 n + β log n + γ

n2 + O
(
log3 n

n3

))
,

where C depends on the initial value, and

α =
27
128
, β =

9
16

C −
9

32
, γ =

3
8

C2 −
3
8

C +
5
32
.

Let the initial value x1 = x. From the asymptotic expansion of xn, one can see that C: (0, 1) → R is
given by

C(x) = lim
n→∞

(
2n −

3 log n
4
− 2n

√
2nxn

)
.

□

Next, we will discuss the monotonicity and smoothness of C(x).

Theorem 2. The function C(x) is strictly decreasing on (0,
√

3
3 ), strictly increasing on (

√
3

3 , 1), and its
minimum value

C
 √3

3

 ≈ 1.5739.

Proof. By the proof of Lemma 4,

bn =
1

2x2
n
, n ≥ 1,

satisfies the recurrence relation
bn+1 = h(bn),

where
h(x) = x + 1 +

3
2
·

1
(2x − 1)

+
1
2
·

1
(2x − 1)2 , x ∈ (1/2,+∞) .

It follows that

hn(x) = x + n +
3
2

n−1∑
k=0

1(
2hk(x) − 1

) + 1
2

n−1∑
k=0

1(
2hk(x) − 1

)2 , n ≥ 2. (3.1)

And hn(x) is a strictly increasing sequence with respect to n. Furthermore, one can see that

hn(x) > n + 1/2

for all x ∈ (1/2,+∞) and every n ∈ N.
According to the proof of Theorem 1, let us define

g(x) = lim
n→∞

(
hn−1(x) − n −

3
4

log n
)
.

Obviously,

g
( 1
2x2

)
= C(x).
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Thus we can consider g(x) instead of C(x). One can obtain

g′(x) =
(
1 −

3
(2x − 1)2 −

2
(2x − 1)3

) +∞∏
k=1

(
1 −

3(
2hk(x) − 1

)2 −
2(

2hk(x) − 1
)3

)
,

since

h′(x) = 1 −
3

(2x − 1)2 −
2

(2x − 1)3

and

(hn)′ (x) = h′
(
hn−1(x)

)
h′

(
hn−2(x)

)
· · · h′(x), n ≥ 1.

Therefore g′(x) > 0 for x > 3
2 and g′(x) < 0 for

1
2
< x <

3
2
.

It follows from

g(x) = C
(

1
√

2x

)
that C(x) is strictly decreasing on (0,

√
3

3 ), strictly increasing on (
√

3
3 , 1), and C(x) takes the minimum

value at
√

3
3 . □

See Figures 1 and 2, which are plotted with Matlab. Figure 2 is a magnified view of the central
section shown in Figure 1.
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Figure 1. C(x) where x ∈ (0.05, 0.950).
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Figure 2. C(x) where x ∈ (0.40, 0.75).

Theorem 3. Let

h(x) = x + 1 +
3
2
·

1
(2x − 1)

+
1
2
·

1
(2x − 1)2

for x ∈ (1/2,∞) and

g(x) = lim
n→∞

(
hn−1(x) − n −

3
4

log n
)
.

Then g is continuously differentiable and

g(h(x)) = g(x) + 1, x ∈ (1/2,∞) .

Proof. From the previous discussion, one can see that

(hn−1(x))′ =
n−2∏
k=0

(
1 −

3(
2hk(x) − 1

)2 −
2(

2hk(x) − 1
)3

)
, n ≥ 2.

According to the inequality

hn(x) > n +
1
2

and Lemma 5, the sequence of (hn−1)′(x) is absolutely convergent. Therefore the sequence hn−1(1) +∫ x

1
(hn−1)′(t)dt converges to

g(x) = g(1) +
∫ x

1

∞∏
k=0

(1 −
3

(2hk(t) − 1)2 −
2

(2hk(t) − 1)3 )dt.

This fact shows that g is continuously differentiable.
The functional equation

g
(
h(x)

)
= g

(
x
)
+ 1,
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immediately, follows from

g (h(x)) = lim
n→∞

(
h(hn−1(x)) − n −

3
4

log n
)

= lim
n→∞

hn−1(x) + 1 +
3
2

1(
2hn−1(x) − 1

) + 1
2

1(
2hn−1(x) − 1

)2 − n −
3
4

log n


=g
(
x
)
+ 1.

This completes the proof. □

Corollary 1. The function C(x) is continuously differentiable on the interval (0, 1).

Proof. The result follows directly from the composition

C(x) = g
(

1
2x2

)
.

This completes the proof. □

4. Conclusions

Our analysis gives the first six terms of the asymptotic expansion of iterates of the cubic function

xn = f (xn−1) =
1
√

2n

(
1 −

3
8

log n
n
−

C
2n
+
α log2 n + β log n + γ

n2 + O
(
log3 n

n3

))
, n→ ∞,

where the constant C with respect to the initial value x = x1

C(x) = lim
n→∞

(
2n −

3 log n
4
− 2n

√
2nxn

)
.

One can see that C(x) does not have a closed-form expression, but only a limiting form. We study the
properties of C(x) through the iterated function. This is a natural and tractable approach. It is proved
that C(x) is continuously differentiable on the interval (0, 1), and strictly decreasing on (0,

√
3

3 ), strictly
increasing on (

√
3

3 , 1), with minimum value C(
√

3
3 ).

Our approach to studying C(x) for the cubic function provides an example for studying and
understanding some properties of constants in the other asymptotic expansions.
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