We investigate the asymptotic behaviors of American maximum options with dividend-paying assets near maturity. Using the exercise conditions of American options, we obtain the asymptotic forms of the two boundaries with respect to time-to-maturity. Furthermore, we derive the matched asymptotic expansion for the rescaled value function of American maximum option. The all results are provided with detailed computations and derivations. Numerical examples show that the asymptotic value function and exercise boundaries can provide an efficient alternative for the true ones, respectively.
Citation: Rui Hou, Yongqing Xu, Jinhua Fan, Yuanguo Zhu. Short time asymptotics for American maximum options with a dividend-paying asset[J]. AIMS Mathematics, 2022, 7(8): 13977-13993. doi: 10.3934/math.2022772
We investigate the asymptotic behaviors of American maximum options with dividend-paying assets near maturity. Using the exercise conditions of American options, we obtain the asymptotic forms of the two boundaries with respect to time-to-maturity. Furthermore, we derive the matched asymptotic expansion for the rescaled value function of American maximum option. The all results are provided with detailed computations and derivations. Numerical examples show that the asymptotic value function and exercise boundaries can provide an efficient alternative for the true ones, respectively.
[1] | F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. http://doi.org/10.1086/260062 doi: 10.1086/260062 |
[2] | R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci., 4 (1973), 141–183. http://doi.org/10.2307/3003143 doi: 10.2307/3003143 |
[3] | R. Roll, An analytic valuation formula for unprotected American call options on stocks with known dividends, J. Financ. Econ., 5 (1977), 251–258. http://doi.org/10.1016/0304-405X(77)90021-6 doi: 10.1016/0304-405X(77)90021-6 |
[4] | R. Geske, A note on an analytical valuation formula for unprotected American options on stocks with known dividends, J. Financ. Econ., 7 (1979), 375–380. http://doi.org/10.1016/0304-405X(79)90004-7 doi: 10.1016/0304-405X(79)90004-7 |
[5] | R. E. Whaley, On the valuation of American call options on stocks with known dividends, J. Financ. Econ., 9 (1981), 207–211. http://doi.org/10.1016/0304-405X(81)90013-1 doi: 10.1016/0304-405X(81)90013-1 |
[6] | I. J. Kim, The analytical valuation of American options, Rev. Financ. Stud., 3 (1990), 547–572. http://doi.org/10.1093/rfs/3.4.547 doi: 10.1093/rfs/3.4.547 |
[7] | S. D. Jacka, Optimal stopping and the Ameican put, Math. Financ., 1 (1991), 1–14. http://doi.org/10.1111/j.1467-9965.1991.tb00007.x doi: 10.1111/j.1467-9965.1991.tb00007.x |
[8] | P. Carr, R. Jarrow, R. Myneni, Alternative characterization of American puts, Math. Financ., 2 (1992), 87–106. http://doi.org/10.1111/j.1467-9965.1992.tb00040.x doi: 10.1111/j.1467-9965.1992.tb00040.x |
[9] | J. Goodman, D. N. Ostrov, On the early exercise boundary of the American put Option, SIAM J. Appl. Math., 62 (2002), 1823–1835. https://doi.org/10.1137/S0036139900378293 doi: 10.1137/S0036139900378293 |
[10] | X. Chen, J. Chadam, Analytical and numerical approximations for the early exercise boundary for American put option, Dynam. Cont. Dis. Ser. A, 10 (2003), 649–660. |
[11] | G. Barone-Adesi, The saga of the American put, J. Bank. Financ., 29 (2005), 2909–2918. http://doi.org/10.1016/j.jbankfin.2005.02.001 doi: 10.1016/j.jbankfin.2005.02.001 |
[12] | L. S. Jiang, Analysis of pricing American options on the maximum(minimum) of two risk assets, Interface. Free Bound., 4 (2002), 27–46. http://doi.org/10.4171/IFB/51 doi: 10.4171/IFB/51 |
[13] | J. D. Evans, R. Kuske, J. B. Keller, American options on assets with dividends near expiry, Math. Financ., 12 (2002), 219–237. http://doi.org/10.1111/1467-9965.02008 doi: 10.1111/1467-9965.02008 |
[14] | P. Wilmott, J. Dewynne, S. Howison, Option pricing: Mathematical models and computation, Oxford: Oxford Financial Press, 1993. |
[15] | C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers, New York: McGrawHill, 1978. |
[16] | K. It$\hat{\mathrm{o}}$, Stochastic integral, Proc. Imp. Acad., 20 (1944), 519–524. http://doi.org/10.3792/pia/1195572786 doi: 10.3792/pia/1195572786 |
[17] | K. It$\hat{\mathrm{o}}$, On stochastic differential equations, Mem. Am. Math. Soc., 4 (1951), 1–51. http://doi.org/10.1090/memo/0004 doi: 10.1090/memo/0004 |
[18] | R. Kuske, J. B. Keller, Optimal exercise boundary for an American put option, Appl. Math. Financ., 5 (1998), 107–116. http://doi.org/10.1080/135048698334673 doi: 10.1080/135048698334673 |
[19] | S. D. Jacka, A. Mijatovi, On the policy improvement algorithm in continuous time, Stochastics, 89 (2016), 348–359. http://doi.org/10.1080/17442508.2016.1187609 doi: 10.1080/17442508.2016.1187609 |
[20] | E. Magirou, P. Vassalos, N. Barakitis, A policy iteration algorithm for the American put option and free boundary control problems, J. Comput. Appl. Math., 373 (2020), 1–14. http://doi.org/10.1016/j.cam.2019.112544 doi: 10.1016/j.cam.2019.112544 |
[21] | T. Zaevski, A new approach for pricing discounted American options, Commun. Nonlinear Sci., 97 (2021), 1–19. http://doi.org/10.1016/j.cnsns.2021.105752 doi: 10.1016/j.cnsns.2021.105752 |
[22] | X. He, W. Chen, Pricing foreign exchange options under a hybrid Heston-Cox-Ingersoll-Ross model with regime switching, IMA J. Manag. Math., 33 (2022), 255–272. http://doi.org/10.1093/imaman/dpab013 doi: 10.1093/imaman/dpab013 |
[23] | X. He, S. Lin, An analytical approximation formula for barrier option prices under the Heston model, Comput. Econ., 2021. http://doi.org/10.1007/s10614-021-10186-7 doi: 10.1007/s10614-021-10186-7 |
[24] | X. He, W. Chen, A closed-form pricing formula for European options under a new stochastic volatility model with a stochastic long-term mean, Math. Financ. Econ., 15 (2021), 381–396. http://doi.org/10.1007/s11579-020-00281-y doi: 10.1007/s11579-020-00281-y |