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1. Introduction

How to value options is a central problem of mathematical finance. For European call options,
Black and Schole [1] derived a closed-form solution in their seminal paper. However, the formulas are
not suitable for American options by analogy. Actually, the valuations of American options are the
most difficult problems in the field of options’ pricing. Using a simple arbitrage argument, Merton [2]
recognized that the valuation of American options was a free boundary problem. The difficulty
in pricing American option stems from ascertaining when to implement the early exercise right or
deciding the optimal stopping time of the option, which embodies mathematically that the unknown
exercise boundary involves in the solution of the free boundary problem. Although Roll [3], Geske [4],
and Whaley [5] have derived the analytic solutions for American options on assets with discrete
dividends, no analytic solution exists for American options if the underlying assets pay continuous
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dividends. The pricing of American options has been a challenging problem for decades.
To overcome the difficulty in pricing American options, many numerical methods and

approximation methods have been developed. Binomial tree model, Monte Carlo simulation, finite
difference method and other methods are commonly used numerical techniques. When the time is
close to expiry, some of numerical method lose their accuracy and efficiency. To promote the theoretical
analysis for American options, Kim [6], Jacka [7], and Carr et al. [8] divided American option value
into the corresponding European option value and an early exercise right premium. The premium
can be written as an integral involved the optimal exercise boundary. This makes it possible to find an
approximation solution under proper conditions. The basic property of American option provides some
matching conditions since the function of American options price is smooth at its exercise boundary.
Goodman and Ostrov [9] and Chen and Chadam [10] found American option price must be independent
of time-to-maturity whenever it is optimal to early exercise. Utilizing these matching conditions, we
can get some integral equations. Various methods were adopted to solve the integral equations and
then got the approximate analytic solutions. More information about the development of this subject
can be found in a general review and summary given by Giovanni [11].

Much research has focused only on standard American options on single asset such as simple call
or put options. However, options traded in modern financial markets are highly diversified, few studies
have explored these complex American-style options. So there is an urgent need for pricing these
options. Jiang [12] analyzed American options on the maximum (minimum) of two risk assets, he
focused on the relationship between several factors and the option price as well as the monotonicity,
convexity and limit behavior of the optimal exercise boundary. If we use the limits of the boundaries
at the maturity to substitute them, it will produce unavoidable error of valuation. To the best of our
knowledge, there are nearly no existing studies concerning the short time asymptotic behaviors of
American options with multiple boundaries. Motivated by the work of Evans et al. [13], we extend
the short time asymptotic studies from the case of single boundary to the case with double boundaries.
The contribution of our paper is to study the short time asymptotic behaviors of double boundaries for
American maximum options. For upper and lower boundaries of an American maximum option, we
derive the behaviors of them and then derive the asymptotic expansion of the value function when the
time approaches the maturity.

The American maximum option studied here holds the feature with the minimum payoff L and has
the payoff function max(S , L), S is the underlying asset price satisfying geometric Brownian motion

dS t = S t[(r − D)dt + σdWt], (1.1)

where the constants r, D and σ are the riskless interest rate, dividend yield and volatility of the
price, respectively. Wt is a standard Brown motion, which is defined in a complete probability space.
According to Black-Scholes theory, American maximum option value V(S , t) at time t and S t = S
satisfies the following equation

∂V
∂t

+
σ2

2
S 2∂

2V
∂S 2 + (r − D)S

∂V
∂S
− rV = 0, in 0 < t < TF , S a(t) < S < S b(t), (1.2)

where TF is the time of expiry, S a(t) and S b(t) denote the lower and upper optimal boundaries,
respectively. Different from standard American options studied by Kim [6] and Wilmott et al. [14],
Eq (1.2) describes a pricing model for American maximum option with double exercise boundaries.
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When the underlying asset price drops to the lower boundary S a(t) or rises to the upper boundary S b(t),
the option will be exercised. By analogy, the smooth-fit conditions at two optimal exercise boundaries
are given as

∂V
∂S

= 0, V = L, at S = S a(t),

∂V
∂S

= 1, V = S , at S = S b(t).
(1.3)

At time TF , the final value of V is the payoff,

V(S ,TF) = max(S , L). (1.4)

The limits of S a(t) and S b(t) as t tends to TF from below can be obtained from Theorem 7.1 in Jiang [12]
as

S a(t) ↑, S a(T−F ) = L,

S b(t) ↓, S b(T−F ) = L.
(1.5)

To make the model and results more practical, we choose an analytical approximation method rather
than a numerical method. By contrast, pricing options by approximation method is convenient and
highly efficient. Evans et al. [13] proposed a wonderful way of approximating American put options,
which showed great accuracy near expiry. This is also meaningful for market application. Referring
to their studies, we expand their method to deal with the problem of double boundaries and obtain the
following results for the optimal exercise boundaries for the American maximum option: as TF − t � 1
or t → TF

S a(t) = L − Lσ

√
(TF − t)ln

σ2

8π(TF − t)r2 , (1.6)

S b(t) = L + Lσ

√
(TF − t)ln

σ2

8π(TF − t)D2 . (1.7)

We also derive the asymptotic expansion of the option value using matched asymptotic expansions
method sketched by Bender and Orszag [15].

This paper is organized as follows. In Section 2, we use two different methods to get the
representation of American maximum option value. In Section 3, we derive integral equations from
a matching condition. In Section 4, we provide the solutions of the integral equations for the optimal
boundaries. In Section 5, we use matched asymptotic expansions method to get the option value. In
Section 6, we provide numerical examples to compare our results with exact result. Some concluding
remarks are given in the end.

2. Representation of the maximum option value

In this section, we will give the representation of American maximum option value by two different
methods.

To simplify the Eqs (1.2)–(1.5), we let

S = Lex, τ =
σ2

2
(TF − t), (2.1)
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V(S , t) = LM(x, τ), S a(t) = Lea(τ), S b(t) = Leb(τ), (2.2)

ρ =
2r
σ2 , v =

2D
σ2 , λ = ρ − v − 1. (2.3)

Then (1.2)–(1.5) can be rewritten in the new form

∂M
∂τ

=
∂2M
∂x2 + λ

∂M
∂x
− ρM, in 0 < τ <

σ2

2
TF , a(τ) < x < b(τ), (2.4)

∂M
∂x

= 0, at x = a(τ),

M = 1, at x ≤ a(τ),
(2.5)


∂M
∂x

= ex, at x = b(τ),

M = ex, at x ≥ b(τ),
(2.5’)

M(x, 0) = max(1, ex), (2.6)

a(τ) ↓, a(0) = ln
S a(T−F )

L
= 0,

b(τ) ↑, b(0) = ln
S b(T−F )

L
= 0.

(2.7)

To solve partial differential Eqs (2.4), (2.5) and (2.5′), we use Green’s theorem. By transforming (2.4)
to a standard heat equation, we get Green’s function G(x, τ) associated with Eq (2.4) is

G(x, τ) =
1
√

4πτ
e−ρτe−

(x+λτ)2
4τ , τ > 0. (2.8)

Then we define f and g by the following equalities{
Mτ − Mxx − λMx + ρM = f in R × (0,+∞),

M = g on R × {τ = 0}.
(2.9)

Noticing that M(x, τ) = 1 for x 6 a(τ), M(x, τ) = ex for x > b(τ), and Mτ − Mxx − λMx + ρM = 0 for
a(τ) < x < b(τ), we get  f (x, τ) = ρ · 1(x6a(τ)) + vex · 1(x>b(τ)),

g(x) = max{1, ex},
(2.10)

where 1(·) is the characteristic function.
According to Green’s theorem, in the domain bounded by two optimal exercise boundaries and the

line τ = 0, we can write
M(x, τ) := I1(x, τ) + I2(x, τ). (2.11)

with I1(x, τ) =
∫ +∞

−∞
G(x− y, τ)g(y)dy and I2(x, τ) =

∫ τ

0

∫ +∞

−∞
G(x− y, τ−u) f (y, u)dydu. Further, we have

that
I1(x, τ) =e−ρτN

(
−

x + λτ
√

2τ

)
+ ex−vτN

( x + (λ + 2)τ
√

2τ

)
,

I2(x, τ) =

∫ τ

0
ρe−ρ(τ−u)N

(
−

x − a(u) + λ(τ − u)
√

2(τ − u)
)
du

+

∫ τ

0
vex−v(τ−u)N

( x − b(u) + (λ + 2)(τ − u)
√

2(τ − u)
)
du,

(2.12)
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where N(·) is the cumulative distribution function of the standard normal distribution.
In the following, we derive (2.12) by Itô calculus [16,17]. Back to V(S , t), for the differential of the

discounted value process, taking the integral from t to TF and then compute the expectations of both
sides, we have

E
[ ∫ TF

t
d(e−ruV(S u, u))

]
= E[e−rTF V(S TF ,TF) − e−rtV(S t, t)]

= E(e−rTF max{S TF , L}) − e−rtV(S t, t).
(2.13)

Using Itô calculus, we get

d(e−rtV(S t, t)) = e−rt[(Vt +
σ2

2
S 2

t Vss + (r − D)S Vs − rV)dt + VsS tσdWt]. (2.14)

where the simplified notations are defined by Vs := ∂V
∂S (S t, t) and Vss := ∂2V

∂S 2 (S t, t). Noticing that
V(S , t) = L for S t 6 S a(t), V(S , t) = S for S > S b(t), and Vt + σ2

2 S 2Vss + (r − D)S Vs − rV = 0
for S a(t) < S < S b(t), we get

E
[ ∫ TF

t
d(e−ruV(S u, u))

]
= E

[ ∫ TF

t
e−ru[−rL · 1(S u6S a(u)) − DS u · 1(S u>S b(u))]du

]
+ E

[ ∫ TF

t
e−ruσS u[VS · 1(S a(u)<S u<S b(u)) + 1(S u>S b(u))]dWu

]
.

(2.15)

The integral in the second term on the right side of (2.15) containing standard Brown motion is a
martingale and its expectation equals to 0. The first term and the expectation on the right side of (2.13)
are some integrals containing the transition probability density function

f (S T |S t) =
1

S Tσ
√

2π(T − t)
e−

[ln
S T
S t
−(r−D−σ

2
2 )(T−t)]2

2σ2(T−t) . (2.16)

Then we get

V(S , t) =S e−D(TF−t)N(
ln S

L + (r − D + σ2

2 )(TF − t)

σ
√

TF − t
)

+ Le−r(TF−t)N(
ln L

S − (r − D − σ2

2 )(TF − t)

σ
√

TF − t
)

+

∫ TF−t

0
rLe−ruN(

ln S a(t + u) − lnS − (r − D − σ2

2 )u

σ
√

u
)du

+

∫ TF−t

0
DS e−DuN(

ln S − ln S b(t + u) + (r − D + σ2

2 )u

σ
√

u
)du.

(2.17)

Using variable substitution in (2.1)–(2.3), we know that (2.17) is the same as (2.12).
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3. Matching condition and the integral equation

In this section, we will derive integral equations from a matching condition. To find the matching
conditions, for the variable x = x(τ), we take the τ derivative of M

dM(x, τ)
dτ

=
∂M
∂x

dx
dτ

+
∂M
∂τ

. (3.1)

Substituting Mx in (2.5) and (2.5′) into (3.1), we obtain two equations on double boundaries

Mτ(a(τ), τ) = 0, Mτ(b(τ), τ) = 0. (3.2)

Mathematically, we utilize the derivative formula in (3.1) to the compound functions M(a(τ), τ) and
M(b(τ), τ) plus the boundaries (2.5) and (2.5′) and then obtain the equalities in (3.2). Besides, the
equalities in (3.2) hold from the financial meaning that American maximum option has no time value
at the exercise boundaries. By (2.11) and (3.2), we get the integral equations

∂I1

∂τ
[a(τ), τ] + lim

x→a(τ)

∂I2

∂τ
[x, τ] = 0,

∂I1

∂τ
[b(τ), τ] + lim

x→b(τ)

∂I2

∂τ
[x, τ] = 0.

(3.3)

By Evans et al. [13], we can write I1 and I2 as follows

I1(x, τ) =e−ρτ(1 −
1
2

erfc(−
x + λτ

2
√
τ

))

+ ex−vτ(1 −
1
2

erfc(
x + (λ + 2)τ

2
√
τ

)),
(3.4)

I2(x, τ) =

∫ τ

0
ρe−ρ(τ−u)(1 −

1
2

erfc(−
x − a(u) + λ(τ − u)

2
√
τ − u

))du

+

∫ τ

0
vex−v(τ−u)(1 −

1
2

erfc(
x − b(u) + (λ + 2)(τ − u)

2
√
τ − u

))du,
(3.5)

where erfc(z) denotes the complementary error function defined as

erfc(z) =
2
√
π

∫ ∞

z
e−t2dt ∼

e−z2

√
πz
, as z→ +∞. (3.6)

The error function erfc(z) holds the following properties

erfc′(z) = −
2
√
π

e−z2
,

erfc(z)→ 0 as z→ +∞, erfc(z)→ 2 as z→ −∞.
(3.7)

To derive the short time asymptotic behaviors of the optimal exercise boundaries, we write a(τ) and
b(τ) in terms of the following unknown functions α(τ)(> 0) and β(τ)(> 0) as

a(τ) = a(0) − 2
√
τα(τ) = −2

√
τα(τ),

b(τ) = b(0) + 2
√
τβ(τ) = 2

√
τβ(τ).

(3.8)
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Actually, we can show that α(τ) → +∞ and β(τ) → +∞ as τ → 0. Because of the equation ∂M
∂x =

∂I1
∂x + ∂I2

∂x , and ∂I2
∂x being an integral from 0 to τ, it holds that lim

τ→0+

∂I2
∂x = 0. The expression of ∂I1

∂x is
provided as follows:

∂I1

∂x
(a(τ), τ) = e−ρτ

1
4
√
τ

erfc′(−
a(τ) + λτ

2
√
τ

)+ea(τ)−vτ[(1−
1
2

erfc(
a(τ) + (λ + 2)τ

2
√
τ

))−
1

4
√
τ

erfc′(
a(τ) + (λ + 2)τ

2
√
τ

)].

Using a(0) = 0,a(τ) = −2
√
τα(τ) and erfc′(z) = − 2

√
π
e−z2

and by (2.5), we have that lim
τ→0+

∂I1
∂x (a(τ), τ) =

lim
τ→0+

(1 − 1
2erfc(−α(τ)) = 0, thus we have that lim

τ→0+
erfc(−α(τ)) = 2, which implies lim

τ→0+
α(τ) = +∞

by the property of the error function. With the same discussions by (2.5′) for b(τ), we can prove that
lim
τ→0+

β(τ) = +∞ .
The following asymptotic results will also confirm that both α(τ) and β(τ) tend to +∞ as τ → 0.

For I1 in (3.4), we take the partial derivative with respect to τ. On the lower boundary where x = a(τ),
by the asymptotic form in (3.6) and the properties in (3.7), we have

∂I1

∂τ
(a(τ), τ) ∼

1
2
√
πτ

e−
a2(τ)

4τ − ρ(1 +

√
τ

√
πa(τ)

e−
a2(τ)

4τ ) + v
√
τ

√
πa(τ)

e−
a2(τ)

4τ , as τ→ 0. (3.9)

Keeping the leading order terms in (3.9), we obtain

∂I1

∂τ
(a(τ), τ) ∼

1
2
√
πτ

e−
a2(τ)

4τ − ρ, as τ→ 0. (3.10)

Letting u = τz, for ease of representations, we define two notations

B(x, z, τ) =
a(u) − x
2
√
τ − u

=
−x/(2

√
τ) −

√
zα(τz)

√
1 − z

,

F(x, z, τ) =
b(u) − x
2
√
τ − u

=
−x/(2

√
τ) +

√
zβ(τz)

√
1 − z

.

(3.11)

The two arguments of erfc in (3.5) can be written as

−
x − a(u) + λ(τ − u)

2
√
τ − u

= B(x, z, τ) −
λ

2
√
τ
√

1 − z,

x − b(u) + (λ + 2)(τ − u)
2
√
τ − u

=
λ + 2

2
√
τ
√

1 − z − F(x, z, τ).
(3.12)

Taking the derivative of I2 about τ and keeping the leading order terms, we get

∂I2

∂τ
∼ρe−ρτ

∫ 1

0
eρτz(1 −

1
2

erfc(B −
λ

2
√
τ
√

1 − z))dz

+ τρe−ρτ
∫ 1

0
eρτz 1
√
π

e−(B− λ2
√
τ
√

1−z)2
(Bτ −

λ

2
1

2
√
τ

√
1 − z)dz

+ vex−vτ
∫ 1

0
evτz(1 −

1
2

erfc(
λ + 2

2
√
τ
√

1 − z − F))dz

+ τvex−vτ
∫ 1

0
evτz 1
√
π

e−( λ+2
2
√
τ
√

1−z−F)2
(
λ + 2

2
1

2
√
τ

√
1 − z − Fτ)dz.

(3.13)
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Letting τ→ 0 and x→ a(τ), expanding the exponential functions and erfc to order
√
τ, we obtain

lim
x→a(τ)

∂I2

∂τ
(x, τ) ∼ ρ + lim

x→a(τ)

[vex

2
(
∫ 1

0
erfcFdz − τ

2
√
π

∫ 1

0
Fτe−F2

dz)

−
ρ

2
(
∫ 1

0
erfcBdz − τ

2
√
π

∫ 1

0
Bτe−B2

dz)

+ vex(λ + 2)(
3
√
τ

4
√
π

∫ 1

0

√
1 − ze−F2

dz −
τ

3
2

√
π

∫ 1

0

√
1 − zFFτe−F2

dz)

− ρλ(
3
√
τ

4
√
π

∫ 1

0

√
1 − ze−B2

dz −
τ

3
2

√
π

∫ 1

0

√
1 − zBBτe−B2

dz)

+ τvex(
λ + 2

2
)2 1
√
π

∫ 1

0
(1 − z)Fe−F2

dz − τρ(
λ

2
)2 1
√
π

∫ 1

0
(1 − z)Be−B2

dz
]
.

(3.14)

At the upper boundary x = b(τ), as τ→ 0, we have

∂I1

∂τ
(b(τ), τ) ∼

1
2
√
πτ

e−
b2(τ)

4τ − v, (3.15)

lim
x→b(τ)

∂I2

∂τ
(x, τ) ∼ v + lim

x→b(τ)

[vex

2
(−

∫ 1

0
erfc(−F)dz − τ

2
√
π

∫ 1

0
Fτe−F2

dz)

−
ρ

2
(−

∫ 1

0
erfc(−B)dz − τ

2
√
π

∫ 1

0
Bτe−B2

dz)

+ vex(λ + 2)(
3
√
τ

4
√
π

∫ 1

0

√
1 − ze−F2

dz −
τ

3
2

√
π

∫ 1

0

√
1 − zFFτe−F2

dz)

− ρλ(
3
√
τ

4
√
π

∫ 1

0

√
1 − ze−B2

dz −
τ

3
2

√
π

∫ 1

0

√
1 − zBBτe−B2

dz)

+ τvex(
λ + 2

2
)2 1
π

∫ 1

0
(1 − z)Fe−F2

dz − τρ(
λ

2
)2 1
π

∫ 1

0
(1 − z)Be−B2

dz
]
.

(3.16)

4. Solution of the integral equations

In this section, we will provide the solutions of the integral equations for the optimal boundaries.
We shall deal with the lower boundary at first. As τ → 0, in the following, we will prove the ten

terms containing integrals on the right side of (3.14) tend to 0 except one term tends to −ρ2 × 2.
The results (A.6) and (A.7) in Appendix A in Evans et al. [13] show that the third integral tends

to 0, the fourth integral multiplied by −2τ/
√
π tends to 2, and the seventh integral tends to O(τ) when

τ→ 0. Applying the formula (A.3) to the tenth integral, as τ→ 0, we get∫ 1

0
(1 − z)Be−B2

dz ∼ (1 − z0)B(z0)
√
π

|Bz(z0)|
. (4.1)

Then the tenth integral tends to 0 for B(z0) = 0.
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Comparing the seventh integral and the eighth integral, we find

d
dτ

(
∫ 1

0

√
1 − ze−B2

dz) = −2
∫ 1

0

√
1 − zBBτe−B2

dz. (4.2)

So the eighth integral is of order O(1).
As x→ a(τ), F → α(τ)+

√
zβ(τz)

√
1−z

. As τ→ 0, F → +∞. So the first, fifth and ninth integral tends to 0.
To evaluate the second integral in (3.14), we let

τ

∫ 1

0
Fτe−F2

dz =

∫ 1

0
(−
α(τ)/2 − z

3
2τβ′(τz)

√
1 − z

)e−( α(τ)+
√

zβ(τz)
√

1−z
)2

dz. (4.3)

Notice that α(τ) and −β′(τz) both tend to +∞ as τ→ 0. If α(τ) has higher order than −β′(τz), we have

(−
1

2
√

1 − z
α(τ))e−( α(τ)+

√
zβ(τz)

√
1−z

)2

→ 0, as τ→ 0. (4.4)

If −β′(τz) has higher order than α(τ), by the monotonicity of upper boundary, we can produce
(β(τz)

√
τz)′ > 0 and, for ∀z ∈ (0, 1),

− z
3
2τβ′(τz) <

1
2
√

zβ(τz). (4.5)

Hence, for ∀z ∈ (0, 1),

[−
1

√
1 − z

(−z
3
2τβ′(τz))]e−( α(τ)+

√
zβ(τz)

√
1−z

)2

→ 0, as τ→ 0. (4.6)

So in both cases the second integral multiplied by τ tends to 0.
To evaluate the sixth integral multiplied by τ

3
2 , we write

τ
3
2

∫ 1

0

√
1 − zFFτe−F2

dz =

∫ 1

0
(
√

1 − z
√
τF)τFτe−F2

dz. (4.7)

Following (4.3), (4.6) and the fact

√
τF =

√
τα(τ) +

√
τzβ(τz)

√
1 − z

→ 0, as τ→ 0. (4.8)

we have that the sixth integral multiplied by τ
3
2 tends to 0.

Through the above discussions, we obtain the results that all unknown terms on the right side
of (3.14) tend to 0 except the fourth term tends to −ρ2 × 2.

Substituting (3.10) and (3.14) into (3.3), the integral equation yields to leading order

1
2
√
πτ

e−α
2(τ) ∼ ρ. (4.9)

From (4.9), we have

α2(τ) ∼ ln
1

2ρ
√
πτ
. (4.10)
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For the upper boundary, the discussion on (3.16) is similar as (3.14). The second term tends to
v
2 × (−2) and other terms tend to 0, as τ → 0. Substituting (3.15) and (3.16) into (3.3), we obtain the
integral equation and its solution

1
2
√
πτ

e−β
2(τ) ∼ v. (4.11)

From (4.11), we have

β2(τ) ∼ ln
1

2v
√
πτ
. (4.12)

When TF−t � 1 or τ→ 0, the two boundaries S a(t) and S b(t) in (2.2) have the following asymptotic
forms,

S a(t) = Lea(τ) ∼ L + L · a(τ) ∼ L − 2Lτ1/2[ln1/2ρ
√
πτ]1/2. (4.13)

S b(t) = Leb(τ) ∼ L + L · b(τ) ∼ L + 2Lτ1/2[ln1/2v
√
πτ]1/2. (4.14)

5. Matched asymptotic expansions for the maximum option

To derive the asymptotic expansion expression of the option value, we analyze the small time
behavior of system (2.4)–(2.7). When T and X are bounded variables, let θ be an artificial small
parameter and

τ = θT, x = θ1/2X, (5.1)

then (2.4) and (2.6) become
∂M
∂T

=
∂2M
∂X2 + θ1/2λ

∂M
∂X
− θρM, (5.2)

M(x, 0) = max(1, eθ
1/2X). (5.3)

Then we can get the expansion of M as

M(x, τ) = 1 + θ1/2M0(X,T ) + θM1(X,T ) + θ3/2M2(X,T ) + O(θ2). (5.4)

Matching the terms with the same order of θ on two sides of (5.2) and (5.3), we get three partial
differential equations for M0,M1 and M2 as follows.
Problem 1. M0 satisfies a PDE problem with initial conditions

∂M0

∂T
=
∂2M0

∂X2 , in −∞ < X < +∞, T > 0,

M0(X, 0) = max(X, 0); as X → −∞, M0 → 0; as X → +∞, M0 ∼ X.

Using Green’s formula, it admits the following representation

M0(X,T ) =

∫ +∞

0

1
√

4πT
e−

(X−ξ)2
4T ξdξ. (5.5)

By direct computations, we can obtain its expression as

M0(X,T ) =

√
T
√
π

e−( X
2
√

T
)2

+
X
2

erfc(−
X

2
√

T
). (5.6)
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Setting ζ = X
2
√

T
and

h0(ζ) =
1
√
π

e−ζ
2
+ ζerfc(−ζ), (5.7)

we get M0(X,T ) =
√

Th0(ζ).
Problem 2. M1 satisfies a PDE problem with initial conditions

∂M1

∂T
=
∂2M1

∂X2 + λ
∂M0

∂X
− ρ, in −∞ < X < +∞, T > 0,

M1(X, 0) =


1
2

X2, X > 0,

0, X < 0;
as X → −∞,

∂M1

∂X
→ 0; as X → +∞, M1 ∼

X2

2
.

Since ∂M0
∂X = 1

2erfc(− X
2
√

T
), by Green’s formula, M1(X,T ) has the following solution

M1(X,T ) =

∫ +∞

0

1
√

4πT
e−

(X−ξ)2
4T

ξ2

2
dξ

+

∫ T

0

∫ +∞

−∞

1
√

4π(T − s)
e−

(X−ξ)2
4(T−s)

(λ
2

erfc(−
ξ

2
√

s
) − ρ

)
dξds.

(5.8)

The first integral in (5.8) can be computed as X2

4 erfc(− X
2
√

T
)+ T

√
π

X
2
√

T
e−

X2
4T + T

2 erfc(− X
2
√

T
). Let y =

X−ξ
2
√

T−s
,

we can compute the second integral in (5.8) as∫ T

0

∫ +∞

−∞

1
√

4π(T − s)
e−

(X−ξ)2
4(T−s)

(λ
2

erfc(−
ξ

2
√

s
) − ρ

)
dξds

=

∫ T

0

∫ +∞

−∞

1
√
π

e−y2(λ
2

erfc(

√
T − s

s
y −

X
2
√

s
) − ρ

)
dyds.

(5.9)

Setting parameters a =

√
T−s

s and b = − X
2
√

s , the inner integral in (5.9) containing the error function
becomes

f (a, b) =

∫ +∞

−∞

1
√
π

e−y2
erfc(ay + b)dy. (5.10)

Taking the derivative of f with respect to b, we get

∂ f
∂b

= −

∫ +∞

−∞

2
π

e−y2
e−(ay+b)2

dy

= −
2
π

e−
b2

1+a2

∫ +∞

−∞

e
−(
√

1+a2y+ ab√
1+a2

)2

dy

= −
2
√
π

e−
b2

1+a2
1

√
1 + a2

=
∂erfc( b

√
1+a2

)

∂b
,

(5.11)
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where the third equality comes from the fact that
∫ ∞
−∞

e−x2
dx =

√
π. Thus, we deduce that

f (a, b) = erfc(
b

√
1 + a2

) + g(a). (5.12)

Since g′(a) = fa(a, 0) = −

∫ +∞

−∞

2
π

ye−(1+a2)y2
dy = 0,

g(0) = f (0, 0) − erfc(0) = 0.
(5.13)

So g(a) = 0 and

f (a, b) = erfc(
b

√
1 + a2

). (5.14)

With the formula (5.14), we can compute the integral containing error function in (5.9) as

λ

2

∫ T

0

∫ +∞

−∞

1
√
π

e−y2
erfc(−

√
T − s

s
y −

X
2
√

s
)dyds

=
λ

2

∫ T

0
erfc(−

X
2
√

s√
1+

T−s
s

)ds =
λ

2
Terfc(− X

2
√

T
).

Thus, we have the expression of M1 in (5.8) as

M1(X,T ) =
X2

4
erfc(−

X

2
√

T
) +

T
√
π

X

2
√

T
e−

X2
4T +

T
2

erfc(−
X

2
√

T
) +

λ

2
Terfc(−

X

2
√

T
) − ρT.

Set ζ = X
2
√

T
, we get M1(X,T ) = Th1(ζ) with

h1(ζ) = ζ2erfc(−ζ) +
1
√
π
ζe−ζ

2
+
λ + 1

2
erfc(−ζ) − ρ (5.15)

and h1 satisfies {
h′′1 + 2ζh′1 − 4h1 = −2λh′0 + 4ρ, in −∞ < ζ < ∞;
as ζ → −∞, h1 → −ρ, h′1 → 0; as ζ → +∞, h1 ∼ 2ζ2 − v.

Problem 3. M2 satisfies a PDE problem with initial conditions

∂M2

∂T
=
∂2M2

∂X2 + λ
∂M1

∂X
− ρM0, in −∞ < X < +∞, T > 0,

M2(X, 0) = max(
1
6

X3, 0); as X → −∞,
∂M2

∂X
→ 0; as X → +∞, M2 ∼

X3

6
− vXT.

From λ∂M1
∂X − ρM0 =

√
T
π
(λ(λ+2)

2 − ρ)e−
X2
4T − (v + 1) X

2 erfc(− X
2
√

T
), using Green’s formula, we have

M2(X,T ) =

∫ +∞

0

1
√

4πT
e−

(X−ξ)2
4T

ξ3

6
dξ

+

∫ T

0

∫ +∞

−∞

1
√

4π(T − s)
e−

(X−ξ)2
4(T−s)

[√ s
π

(
λ(λ + 2)

2
− ρ)e−

ξ2
4s − (v + 1)

ξ

2
erfc(−

ξ

2
√

s
)
]
dξds.

(5.16)
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For the first integral in (5.16), direct computations imply∫ +∞

0

1
√

4πT
e−

(X−ξ)2
4T

ξ3

6
dξ

=
X3

12
erfc(−

X

2
√

T
) +

XT
2

erfc(−
X

2
√

T
) +

2
3

T
√

T
√
π

(
X

2
√

T
)2e−( X

2
√

T
)2

+
2
3

T
√

T
√
π

e−( X
2
√

T
)2

.

Let y =
X−ξ

2
√

T−s
, we compute the second integral of (5.16) as

∫ T

0

∫ +∞

−∞

1
√

4π(T − s)
e−

(X−ξ)2
4(T−s)

√
s
π

(λ(λ + 2)
2

− ρ
)
e−

ξ2
4s dξds

=

∫ T

0

(λ(λ + 2)
2

− ρ
)√ s

π

∫ +∞

−∞

1
√
π

e−y2
e−

(X−2
√

T−sy)2
4s dyds

=

∫ T

0

(λ(λ + 2)
2

− ρ
)√ s

π

∫ +∞

−∞

1
√
π

e−y2
e−( X

2
√

s
−
√

T−s
s y)2

dyds

=

∫ T

0

(λ(λ + 2)
2

− ρ
)√ s

π

∫ +∞

−∞

1
√
π

e−
X2
4T e−(

√
T
s y− X

2
√

s

√
T−s

T )2

dyds

=

∫ T

0
(
λ(λ + 2)

2
− ρ)

√
s
π

√
s
T

e−
X2
4T ds

=
(λ(λ + 2)

2
− ρ

) T
3
2

2
√
π

e−
X2
4T

and

−(v + 1)
∫ T

0

∫ +∞

−∞

1
√

4π(T − s)
e−

(X−ξ)2
4(T−s)

ξ

2
erfc(−

ξ

2
√

s
)dξds

= −(v + 1)
∫ T

0

∫ +∞

−∞

√
s
√
π

e−y2( X
2
√

s
−

√
T − s

s
y
)
erfc

(
−

X
2
√

s
+

√
T − s

s
y
)
dyds

= −(v + 1)
∫ T

0

√
s
[ X
2
√

s
erfc(−

X
2
√

s√
1+ T−s

s

) −
T − s
s
√
π

1
√
π

∫ ∞

−∞

e−y2
e−(− X

2
√

s
+
√

T−s
s y)2

dy
]
ds

= −(v + 1)
∫ T

0

√
s
[ X
2
√

s
erfc(−

X

2
√

T
) −

T − s
s
√
π

√
s
√

T
e−

X2
4T
]
ds

= −T
3
2 (v + 1)

( X

2
√

T
erfc(−

X

2
√

T
) −

1
2

1
√
π

e−
X2
4T
)
,

where the first equality comes from variable change, the second equality comes from (5.14) and
integration by parts, the third equality comes from

∫ ∞

−∞

1
√
π

(b + ay)erfc(b + ay)dy = berfc(
b

√
a2 + 1

) −
a2

√
π

e−
b2

a2+1

√
a2 + 1

.
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Thus, we obtain the expression of M2 as

M2(X,T ) =
X3

12
erfc(−

X

2
√

T
) +

XT
2

erfc(−
X

2
√

T
) +

2
3

T
3
2

√
π

(
X

2
√

T
)2e−( X

2
√

T
)2

+
2
3

T
3
2

√
π

e−( X
2
√

T
)2

+
(λ(λ + 2)

2
− ρ

) T
3
2

2
√
π

e−
X2
4T − T

3
2 (v + 1)

( X

2
√

T
erfc(−

X

2
√

T
) −

1
2

1
√
π

e−
X2
4T
)
.

(5.17)

Using (5.14) and (5.17), we can write M2(X,T ) = T
3
2 h2(ζ) with

h2(ζ) =
2
3
ζ3erfc(−ζ) +

2
3

1
√
π
ζ2e−ζ

2
− vζerfc(−ζ) + (

2
3

+
λ2

4
)

1
√
π

e−ζ
2

(5.18)

and h2 statisfies {
h′′2 + 2ζh′2 − 6h2 = −2λh′1 + 4ρh0, in −∞ < ζ < ∞;
as ζ → −∞, h2 → 0, h′2 → 0; as ζ → +∞, h2 ∼

4
3ζ

3 − 2vζ.

Thus we obtain the asymptotic expansion of the option value as

M(x, τ) ∼ τ1/2h0(
x

2
√
τ

) + τh1(
x

2
√
τ

) + τ3/2h2(
x

2
√
τ

) + O(τ2), x = O(
√
τ). (5.19)

In addition, the following asymptotic forms of h0, h1 and h2 is needed for matching hτ near the
boundaries,

h0(ζ) ∼
1

2
√
π

1
ζ2 e−ζ

2
+ O(ζ−4e−ζ

2
), as ζ → −∞; h0(ζ) ∼ 2ζ + O(ζ−2e−ζ

2
), as ζ → +∞;

h1(ζ) ∼ −ρ + O(ζ−1e−ζ
2
), as ζ → −∞; h1(ζ) ∼ 2ζ2 − v + O(ζ−1e−ζ

2
) as ζ → +∞;

h2(ζ) ∼ −
2

3
√
π
ζ2e−ζ

2
+

1
√
π

(λ2

4
−

1
3
)
e−ζ

2
+ O(ζ−2e−ζ

2
), as ζ → −∞;

h2(ζ) ∼
4
3
ζ3 − 2vζ + O(ζ−1e−ζ

2
), as ζ → +∞.

When approaching the boundaries x = a(τ) + O(τ) and x = b(τ) + O(τ) respectively, and leaving the
higher order, we can use the above asymptotic forms of h0, h1, h2 to obtain the equations

1
2
√
π
√
τ

e−α
2(τ) − ρ ∼ 0 and

1
2
√
π
√
τ

e−β
2(τ) − v ∼ 0,

which correspond to the Eqs (4.9) and (4.11).

6. Numerical examples

In this section, we study some numerical examples with the parameters S 0 = 50, L = 49, r = 0.08,
q = 0.02 and σ = 0.2 We use difference method and asymptotic expansion approach to compute the
prices of American maximum options. For comparison, we consider the options with two different
maturities τ = 0.05 and τ = 0.15, respectively. For τ = 0.15, the exact upper and lower boundaries
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are computed as 56.31 and 44.28, the asymptotic upper and lower boundaries are computed as 55.87
and 46.30. For τ = 0.05, the exact upper and lower boundaries are computed as 53.88 and 45.71,
the asymptotic upper and lower boundaries are computed as 53.58 and 46.22. The following Figure 1
shows the results for two methods.

Figure 1. Maximum options’ exact and asymptotic values with two maturities.

From the above figure, it is clear that our results based on the derived asymptotic formula have
obtained obvious effect.

7. Conclusions

In this paper, we study American maximum options with dividend near expiry. Different from
single boundary considered in vanilla American put and call options, we consider option with two
boundaries. Firstly, we give the asymptotic expressions of the boundaries, and find that the lower
boundary is related to the interest rate and the upper boundary is related to the dividend yield. Then, by
asymptotic expansions, we give asymptotic formula for the value of American maximum option with
short maturity. The analytic asymptotic formulas provide more efficient and more accurate features at
the time near expiry. Furthermore, the formulas obtained in our paper can be extended to the option
with multiple boundaries, so it is expected that our methods have feasibility and practicality in dealing
to the option with multiple boundaries in real financial market.
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