Research article

Upper semicontinuous selections for fuzzy mappings in noncompact $ WPH $-spaces with applications

  • Received: 13 October 2021 Revised: 17 May 2022 Accepted: 18 May 2022 Published: 26 May 2022
  • MSC : 47H04, 47H10, 91A10

  • In this paper, we introduce the concept of a $ WPH $-space without linear structure and proceed to establish a new upper semicontinuous selection theorem for fuzzy mappings in the framework of noncompact $ WPH $-spaces as well as a special form of this selection theorem in crisp settings. As applications, fuzzy collective coincidence point theorems, fuzzy collectively fixed point theorems, and existence theorems of equilibria for the generalized fuzzy games with three constraint set-valued mappings and generalized fuzzy qualitative games in $ WPH $-spaces are obtained. As their special cases in crisp settings, we derive existence theorems of equilibria for generalized games and generalized qualitative games. Finally, we construct a multiobjective game model for water resource allocation and prove the existence of Pareto equilibria for this multiobjective game based on the existence theorem of equilibria for qualitative games.

    Citation: Haishu Lu, Xiaoqiu Liu, Rong Li. Upper semicontinuous selections for fuzzy mappings in noncompact $ WPH $-spaces with applications[J]. AIMS Mathematics, 2022, 7(8): 13994-14028. doi: 10.3934/math.2022773

    Related Papers:

  • In this paper, we introduce the concept of a $ WPH $-space without linear structure and proceed to establish a new upper semicontinuous selection theorem for fuzzy mappings in the framework of noncompact $ WPH $-spaces as well as a special form of this selection theorem in crisp settings. As applications, fuzzy collective coincidence point theorems, fuzzy collectively fixed point theorems, and existence theorems of equilibria for the generalized fuzzy games with three constraint set-valued mappings and generalized fuzzy qualitative games in $ WPH $-spaces are obtained. As their special cases in crisp settings, we derive existence theorems of equilibria for generalized games and generalized qualitative games. Finally, we construct a multiobjective game model for water resource allocation and prove the existence of Pareto equilibria for this multiobjective game based on the existence theorem of equilibria for qualitative games.



    加载中


    [1] E. Michael, Continuous selections I, Ann. Math., 63 (1956), 361–382. https://doi.org/10.2307/1969615 doi: 10.2307/1969615
    [2] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector space, Math. Ann., 177 (1968), 283–301. https://doi.org/10.1007/BF01350721 doi: 10.1007/BF01350721
    [3] N. C. Yannelis, N. D. Prabhakar, Existence of maximal elements and equilibra in linear topological spaces, J. Math. Econ., 12 (1983), 233–245. https://doi.org/10.1016/0304-4068(83)90041-1 doi: 10.1016/0304-4068(83)90041-1
    [4] X. P. Ding, W. K. Kim, K. K. Tan, A selection theorem and its applications, Bull. Aust. Math Soc., 46 (1992), 205–212. https://doi.org/10.1017/S0004972700011849 doi: 10.1017/S0004972700011849
    [5] G. M. Lee, D. S. Kim, B. S. Lee, S. J. Cho, A selection theorem and its application, Commun. Korean Math. Soc., 10 (1995), 759–766.
    [6] X. Wu, S. Shen, A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications, J. Math. Anal. Appl., 197 (1996), 61–74. https://doi.org/10.1006/jmaa.1996.0007 doi: 10.1006/jmaa.1996.0007
    [7] M. Balaj, L. J. Lin, Selecting families and their applications, Comput. Math. Appl., 55 (2008), 1257–1261. https://doi.org/10.1016/j.camwa.2007.06.011 doi: 10.1016/j.camwa.2007.06.011
    [8] W. K. Kim, K. H. Park, K. H. Lee, Fuzzy selection and existence of fuzzy fixed point, Korean J. CAM., 2 (1995), 17–23. https://doi.org/10.1007/BF03008954 doi: 10.1007/BF03008954
    [9] W. K. Kim, K. H. Lee, Generalized fuzzy games and fuzzy equilibria, Fuzzy Sets Syst., 122 (2001), 293–301. https://doi.org/10.1016/S0165-0114(00)00073-7 doi: 10.1016/S0165-0114(00)00073-7
    [10] C. D. Horvath, Extension and selection theorems in topological spaces with generalized convexity structure, Ann. Fac. Sci. Toulouse, 2 (1993), 253–269.
    [11] X. P. Ding, J. Y. Park, Collectively fixed point theorem and abstract economy in $G$-convex spaces, Numer. Func. Anal. Optim., 23 (2002), 779–790. https://doi.org/10.1081/NFA-120016269 doi: 10.1081/NFA-120016269
    [12] Z. T. Yu, L. J. Lin, Continuous selections and fixed point theorems, Nonlinear Anal.: Theory, Methods Appl., 52 (2003), 445–455. https://doi.org/10.1016/S0362-546X(02)00107-4 doi: 10.1016/S0362-546X(02)00107-4
    [13] S. Park, Continuous selection theorems in generalized convex spaces, Numer. Func. Anal. Optim., 20 (1999), 567–583. https://doi.org/10.1080/01630569908816911 doi: 10.1080/01630569908816911
    [14] M. Fakhar, J. Zafarani, Fixed points theorems and quasi-variational inequalities in $G$-convex spaces, Bull. Belg. Math. Soc., 12 (2005), 235–247. https://doi.org/10.36045/bbms/1117805086 doi: 10.36045/bbms/1117805086
    [15] X. P. Ding, Continuous selection, collectively fixed points and system of coincidence theorems in product topological spaces, Acta Math. Sinica, 22 (2006), 1629–1638. https://doi.org/10.1007/s10114-005-0831-y doi: 10.1007/s10114-005-0831-y
    [16] P. Q. Khanh, L. J. Lin, V. S. T. Long, On topological existence theorems and applications to optimization-related problems, Math. Meth. Oper. Res., 79 (2014), 253–272. https://doi.org/10.1007/s00186-014-0462-0 doi: 10.1007/s00186-014-0462-0
    [17] P. Q. Khanh, V. S. T. Long, General theorems of the Knaster-Kuratowski-Mazurkiewicz type and applications to the existence study in optimization, Optimization, 69 (2020), 2695–2717. https://doi.org/10.1080/02331934.2020.1736069 doi: 10.1080/02331934.2020.1736069
    [18] J. L. Kelley, General topology, New York: D. van Nostrand Company, Inc., 1955.
    [19] X. P. Ding, Coincidenc theorems in topological spaces and their applications, Appl. Math. Lett., 12 (1999), 99–105. https://doi.org/10.1016/S0893-9659(99)00108-1 doi: 10.1016/S0893-9659(99)00108-1
    [20] L. A. Zadeh, Fuzzy sets, Inform. Control., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [21] S. S. Chang, Salahuddin, M. K. Ahmad, X. R. Wang, Generalized vector variational like inequalities in fuzzy environment, Fuzzy Sets Syst., 265 (2015), 110–120. https://doi.org/10.1016/j.fss.2014.04.004 doi: 10.1016/j.fss.2014.04.004
    [22] G. J. Tang, T. Zhao, Z. P. Wan, D. X. He, Existence results of a perturbed variational inequality with a fuzzy mapping, Fuzzy Sets Syst., 331 (2018), 68–77. https://doi.org/10.1016/j.fss.2017.02.012 doi: 10.1016/j.fss.2017.02.012
    [23] Y. R. Bai, S. Mig$\acute{o}$rski, S. D. Zeng, Generalized vector complementarity problem in fuzzy environment, Fuzzy Sets Syst., 347 (2018), 142–151. https://doi.org/10.1016/j.fss.2017.09.010 doi: 10.1016/j.fss.2017.09.010
    [24] J. Z. Xiao, X. H. Zhu, H. Zhou, On the topological structure of $KM$ fuzzy metric spaces and normed spaces, IEEE Trans. Fuzzy Syst., 28 (2020), 1575–1584. https://doi.org/10.1109/TFUZZ.2019.2917858 doi: 10.1109/TFUZZ.2019.2917858
    [25] N. V. Hung, V. M. Tam, Y. Zhou, A new class of strong mixed vector $GQVIP$-generalized quasi-variational inequality problems in fuzzy environment with regularized gap functions based error bounds, J. Comput. Appl. Math., 381 (2021), 113055. https://doi.org/10.1016/j.cam.2020.113055 doi: 10.1016/j.cam.2020.113055
    [26] T. C. Lai, Y. C. Lin, J. C. Yao, Existence of equilibrium for abstract economics on pseudo $H$-spaces, Appl. Math. Lett., 17 (2004), 691–696. https://doi.org/10.1016/S0893-9659(04)90106-1 doi: 10.1016/S0893-9659(04)90106-1
    [27] M. Lassonde, On the use of $KKM$ multifunctions in fixed point theory and related topics, J. Math. Anal. Appl., 97 (1983), 151–201. https://doi.org/10.1016/0022-247X(83)90244-5 doi: 10.1016/0022-247X(83)90244-5
    [28] C. Horvath, Some results on multivalued mappings and inequalities without convexity, Nonlinear Convex Anal., 1987.
    [29] S. Park, H. Kim, Foundations of the $KKM$ theory on generalized convex spaces, J. Math. Anal. Appl., 209 (1997), 551–571. https://doi.org/10.1006/jmaa.1997.5388 doi: 10.1006/jmaa.1997.5388
    [30] H. Ben-Ei-Mechaiekh, S. Chebbi, M. Flornzano, J. V. LInares, Abstract convexity and fixed points, J. Math. Anal. Appl., 222 (1998), 138–150. https://doi.org/10.1006/jmaa.1998.5918 doi: 10.1006/jmaa.1998.5918
    [31] R. U. Verma, $G$-$H$-$KKM$ type theorems and their applications to a new class of minimax inequalities, Comput. Math. Appl., 37 (1999), 45–48.
    [32] G. L. Cain Jr., L. Gonz$\acute{a}$lez, The Knaster-Kuratowski-Mazurkiewicz theorem and abstract convexities, J. Math. Anal. Appl., 338 (2008), 563–571. https://doi.org/10.1016/j.jmaa.2007.05.050 doi: 10.1016/j.jmaa.2007.05.050
    [33] S. Al-Homidan, Q. H. Ansari, Fixed point theorems on product topological semilattice spaces, generalized abstract economies and systems of generalized vector quasi-equilibrium problems, Taiwanese J. Math., 15 (2011), 307–330. https://doi.org/10.11650/twjm/1500406176 doi: 10.11650/twjm/1500406176
    [34] X. P. Ding, Maximal element theorems in product $FC$-spaces and generalized games, J. Math. Anal. Appl., 305 (2005), 29–42. https://doi.org/10.1016/j.jmaa.2004.10.060 doi: 10.1016/j.jmaa.2004.10.060
    [35] X. P. Ding, Coincidence theorems in product $G$-convex spaces, Acta Math. Sci., 25 (2005), 401–407. https://doi.org/10.1016/S0252-9602(05)60003-3 doi: 10.1016/S0252-9602(05)60003-3
    [36] T. H. Chang, C. L. Yen, $KKM$ property and fixed point theorems, J. Math. Anal. Appl., 203 (1996), 224–235.
    [37] Q. B. Zhang, C. Z. Cheng, Some fixed-point theorems and minimax inequalities in $FC$-space, J. Math. Anal. Appl., 328 (2007), 1369–1377. https://doi.org/10.1016/j.jmaa.2006.06.027 doi: 10.1016/j.jmaa.2006.06.027
    [38] W. K. Kim, Generalized $C$-concave conditions and their applications, Acta Math. Hungar., 130 (2011), 140–154. https://doi.org/10.1007/s10474-010-0003-0 doi: 10.1007/s10474-010-0003-0
    [39] E. Klein, A. C. Thompson, Theory of correspondence, New York: Wiley-Interscience, 1984.
    [40] X. Z. Yuan, Extensions of Ky Fan section theorems and minimax inequality theorems, Acta Math. Hungar., 71 (1996), 171–182.
    [41] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Natl. Acad. Sci. USA, 38 (1952), 121–126. https://doi.org/10.1073/pnas.38.2.121 doi: 10.1073/pnas.38.2.121
    [42] E. Tarafdar, Fixed point theorems in $H$-spaces and equilibrium points of abstract economies, J. Aust. Math. Soc. Ser. A, 53 (1992), 252–260. https://doi.org/10.1017/S1446788700035825 doi: 10.1017/S1446788700035825
    [43] J. P. Aubin, I. Ekland, Applied nonlinear analysis, New York: John Wiley & Sons., 1984.
    [44] H. S. Lu, Q. W. Hu, Generalized selection theorems for fuzzy mappings and their applications, J. Intell. Fuzzy Syst., 27 (2014), 2103–2113. https://doi.org/10.3233/IFS-141175 doi: 10.3233/IFS-141175
    [45] P. Q. Khanh, V. S. T. Long, N. H. Quan, Continuous selections, collectively fixed points and weak Knaster-Kuratowski-Mazurkiewicz mappings in optimization, J. Optim. Theory Appl., 151 (2011), 552–572. https://doi.org/10.1007/s10957-011-9889-0 doi: 10.1007/s10957-011-9889-0
    [46] Q. H. Ansari, J. C. Yao, A fixed point theorem and its application to a system of variational inequalities, Bull. Aust. Math. Soc., 59 (1999), 433–442. https://doi.org/10.1017/S0004972700033116 doi: 10.1017/S0004972700033116
    [47] K. Q. Lan, J. Webb, New fixed point theorems for a family of mappings and applications to problems on sets with convex sections, Proc. Amer. Math. Soc., 126 (1998), 1127–1132.
    [48] L. J. Lin, Z. T. Yu, Q. H. Ansari, L. P. Lai, Fixed point and maximal element theorems with applications to abstract economies and minimax inequalities, J. Math. Anal. Appl., 284 (2003), 656–671. https://doi.org/10.1016/S0022-247X(03)00385-8 doi: 10.1016/S0022-247X(03)00385-8
    [49] S. P. Singh, E. Tarafdar, B. Watson, A generalized fixed point theorem and equilibrium point of an abstract economy, J. Computat. Appl. Math., 113 (2000), 65–71. https://doi.org/10.1016/S0377-0427(99)00244-7 doi: 10.1016/S0377-0427(99)00244-7
    [50] J. P. Aubin, Mathematical methods of game theory and economic theory, Amsterdam: North-Holland, 1982.
    [51] P. Q. Khanh, N. H. Quan, A fixed-component point theorem and applications, Bull. Malays. Math. Sci. Soc., 42 (2019), 503–520. https://doi.org/10.1007/s40840-017-0496-6 doi: 10.1007/s40840-017-0496-6
    [52] P. De Wilde, Fuzzy utility and equilibria, IEEE T. Syst. Man Cybern. Part B, 34 (2003), 1774–1785. https://doi.org/10.1109/TSMCB.2004.829775 doi: 10.1109/TSMCB.2004.829775
    [53] W. Shafer, H. Sonnenschein, Equilibrium in abstract economics without ordered preference, J. Math. Econom., 2 (1975), 345–348. https://doi.org/10.1016/0304-4068(75)90002-6 doi: 10.1016/0304-4068(75)90002-6
    [54] H. S. Lu, D. Lan, Q. W. Hu, G. Yuan, Fixed point theorems in CAT(0) spaces with applications, J. Inequal. Appl., 2014 (2014), 320. https://doi.org/10.1186/1029-242X-2014-320 doi: 10.1186/1029-242X-2014-320
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(951) PDF downloads(64) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog